Matches in SemOpenAlex for { <https://semopenalex.org/work/W2041205904> ?p ?o ?g. }
- W2041205904 endingPage "84" @default.
- W2041205904 startingPage "75" @default.
- W2041205904 abstract "Crop growth and production are dependent not only on the amount of total nitrogen (N) absorbed by plants, but also on the vertical leaf N distribution within canopies. The non-uniform leaf N distribution has been reported for various plant canopies. Remote sensing has been widely used for determination of crop N status, but such analysis seldom takes N distribution into consideration, ultimately leading to limited accuracy and decreased practical value of the related results. This paper has reviewed the results of previous studies that investigated the ecophysiological aspects of non-uniform N distribution, and the remote sensing methods that have been proposed to monitor this phenomenon. Additionally, this study used field data to analyze the differences in leaf N distribution in wheat canopies with different plant types (i.e. spread type, semi-spread type, and erect type), and provided insights into the estimation of vertical leaf N distribution by means of remote sensing. The process of reviewing research related to the ecophysiological issues of leaf N distribution led to identification of several important inadequacies in the current body of research. We propose that future work should aim to strengthen an understanding of the dynamic response of vertical N distribution within canopies to the various related environment factors and field management strategies. When a more thorough understanding of vertical N distribution is achieved, researchers will be able to improve related quantitative modeling, and may be able to comprehensively reveal the effect of vertical N distribution on canopy photosynthesis performances. In addition, through a comparison of the leaf N profiles of spread, semi-spread, and erect wheat canopies, it was found here that the semi-spread wheat canopy had a more non-uniform N distribution than did the other two types, despite all types having large and full vegetation coverage at the booting stage. Regarding detection of leaf N distribution using remote sensing, the few existing studies can be grouped into three classes according to the hyperspectral data used. One class employed the spectral data obtained from top-view observations; another class used multi-angle canopy reflectance data, while the third mainly focused on the relationships between spectral reflectance and fluorescence characteristics and the leaf N or chlorophyll content for different vertical layers. Despite important progress having been made, the results of the studies and the methods therein face key limitations in practical application. The present paper suggests two possibilities for the estimation of vertical leaf N distribution with remote sensing. One possibility is based upon hyperspectral imaging, and the other possibility combines a vertical N distribution model and canopy reflectance data. The former method requires investigation of the ability of hyperspectral imaging to obtain pure spectral information of different vertical leaf layers. The latter method requires that the key determinants of vertical N distribution be identified to improve quantitative modeling, and that the parameters of the N distribution model be determined from remotely sensed data. Because of the current lack of adequate data, a concrete case study and a very thorough test analysis could not be presented here. But it is still hoped that this work can provide helpful information for future studies." @default.
- W2041205904 created "2016-06-24" @default.
- W2041205904 creator A5002508573 @default.
- W2041205904 creator A5020713851 @default.
- W2041205904 creator A5049898739 @default.
- W2041205904 creator A5088775960 @default.
- W2041205904 date "2013-02-01" @default.
- W2041205904 modified "2023-10-09" @default.
- W2041205904 title "Non-uniform vertical nitrogen distribution within plant canopy and its estimation by remote sensing: A review" @default.
- W2041205904 cites W1505145354 @default.
- W2041205904 cites W1586472827 @default.
- W2041205904 cites W1965341482 @default.
- W2041205904 cites W1965712348 @default.
- W2041205904 cites W1979296088 @default.
- W2041205904 cites W1982080019 @default.
- W2041205904 cites W1987297838 @default.
- W2041205904 cites W1991935655 @default.
- W2041205904 cites W1992798497 @default.
- W2041205904 cites W2005194621 @default.
- W2041205904 cites W2010035564 @default.
- W2041205904 cites W2019305916 @default.
- W2041205904 cites W2021984916 @default.
- W2041205904 cites W2024363542 @default.
- W2041205904 cites W2027778485 @default.
- W2041205904 cites W2032827569 @default.
- W2041205904 cites W2038251232 @default.
- W2041205904 cites W2039500222 @default.
- W2041205904 cites W2044826845 @default.
- W2041205904 cites W2049020339 @default.
- W2041205904 cites W2052839604 @default.
- W2041205904 cites W2055072530 @default.
- W2041205904 cites W2058241480 @default.
- W2041205904 cites W2070047344 @default.
- W2041205904 cites W2071494913 @default.
- W2041205904 cites W2074596894 @default.
- W2041205904 cites W2077673910 @default.
- W2041205904 cites W2078001796 @default.
- W2041205904 cites W2080727452 @default.
- W2041205904 cites W2081734510 @default.
- W2041205904 cites W2089464686 @default.
- W2041205904 cites W2097563918 @default.
- W2041205904 cites W2099660324 @default.
- W2041205904 cites W2102630498 @default.
- W2041205904 cites W2104515103 @default.
- W2041205904 cites W2109777280 @default.
- W2041205904 cites W2112854346 @default.
- W2041205904 cites W2117306007 @default.
- W2041205904 cites W2132001640 @default.
- W2041205904 cites W2139462654 @default.
- W2041205904 cites W2141782815 @default.
- W2041205904 cites W2147592192 @default.
- W2041205904 cites W2150437542 @default.
- W2041205904 cites W2158015037 @default.
- W2041205904 cites W2163410149 @default.
- W2041205904 cites W2164052340 @default.
- W2041205904 cites W2477293155 @default.
- W2041205904 cites W4236621906 @default.
- W2041205904 cites W82462084 @default.
- W2041205904 doi "https://doi.org/10.1016/j.fcr.2012.11.017" @default.
- W2041205904 hasPublicationYear "2013" @default.
- W2041205904 type Work @default.
- W2041205904 sameAs 2041205904 @default.
- W2041205904 citedByCount "69" @default.
- W2041205904 countsByYear W20412059042014 @default.
- W2041205904 countsByYear W20412059042015 @default.
- W2041205904 countsByYear W20412059042016 @default.
- W2041205904 countsByYear W20412059042017 @default.
- W2041205904 countsByYear W20412059042018 @default.
- W2041205904 countsByYear W20412059042019 @default.
- W2041205904 countsByYear W20412059042020 @default.
- W2041205904 countsByYear W20412059042021 @default.
- W2041205904 countsByYear W20412059042022 @default.
- W2041205904 countsByYear W20412059042023 @default.
- W2041205904 crossrefType "journal-article" @default.
- W2041205904 hasAuthorship W2041205904A5002508573 @default.
- W2041205904 hasAuthorship W2041205904A5020713851 @default.
- W2041205904 hasAuthorship W2041205904A5049898739 @default.
- W2041205904 hasAuthorship W2041205904A5088775960 @default.
- W2041205904 hasConcept C101000010 @default.
- W2041205904 hasConcept C110121322 @default.
- W2041205904 hasConcept C116834253 @default.
- W2041205904 hasConcept C127413603 @default.
- W2041205904 hasConcept C134306372 @default.
- W2041205904 hasConcept C18903297 @default.
- W2041205904 hasConcept C202444582 @default.
- W2041205904 hasConcept C205649164 @default.
- W2041205904 hasConcept C2993375840 @default.
- W2041205904 hasConcept C33923547 @default.
- W2041205904 hasConcept C39432304 @default.
- W2041205904 hasConcept C41008148 @default.
- W2041205904 hasConcept C62649853 @default.
- W2041205904 hasConcept C6557445 @default.
- W2041205904 hasConcept C86803240 @default.
- W2041205904 hasConcept C88463610 @default.
- W2041205904 hasConcept C9652623 @default.
- W2041205904 hasConceptScore W2041205904C101000010 @default.
- W2041205904 hasConceptScore W2041205904C110121322 @default.
- W2041205904 hasConceptScore W2041205904C116834253 @default.