Matches in SemOpenAlex for { <https://semopenalex.org/work/W2041242088> ?p ?o ?g. }
- W2041242088 endingPage "60" @default.
- W2041242088 startingPage "46" @default.
- W2041242088 abstract "Microwave ablation (MWA) is a process that uses the heat from microwave energy to kill cancer cells without damaging the surrounding tissue. The effectiveness of this technique is related to the temperature achieved during the process, as well as the input microwave power and heating time of treatment. The modeling of heat transport within biological tissues are key issues and have been used extensively in medical thermal therapeutic applications, for instance MWA treatment for predicting the temperature distribution during process. In this work, the interstitial MWA in porous liver by single slot microwave coaxial antenna (MCA) is carried out. A mathematical model of MWA of the porous media approach is proposed, which uses transient energy equation coupled with electromagnetic wave propagation equation to describe the temperature distribution within porous liver under local thermal non-equilibrium (LTNE) assumption. The LTNE assumption is taken into account by solving the two energy equations for tissue and blood phases. The thermal model considers the tissue with its blood vessel distribution as a porous medium and employs both the interfacial convective heat transfer and blood perfusion rate terms in the transient energy equations for both tissue and blood phases. The coupled nonlinear set of these equations is solved using the axisymmetric finite element method (FEM). The influences of blood velocities, porosities, input microwave powers and positions within the porous liver (distance from a MCA) on the tissue and blood temperature distributions have been investigated. Furthermore, the tissue and blood temperatures of LTNE model are compared with the tissue temperature of Pennes model and Klinger model. Through an accuracy comparison, the temperature results of the one-energy equation under local thermal equilibrium (LTE) model and Pennes model are compared with the experimental results from previous work in order to show the validity of the numerical results. The results show that the LTE assumption is found to be suitable for predicting the temperature distribution when the blood velocities to be 0.4 cm/s and 2 cm/s in all porosities, whilst, in case of blood velocities to be 3 cm/s and 3.4 cm/s the LTNE assumption for heat transfer analysis needs to be utilized. In addition, the LTE model is suitable for predicting a distribution of temperature when the high porosity for this model. This investigation provides the essential aspects for a fundamental understanding of heat transport within biological tissues while experiencing an applied electromagnetic field such as applications in the thermal ablation." @default.
- W2041242088 created "2016-06-24" @default.
- W2041242088 creator A5003694639 @default.
- W2041242088 creator A5072464250 @default.
- W2041242088 date "2013-12-01" @default.
- W2041242088 modified "2023-10-07" @default.
- W2041242088 title "Analysis of heat transport on local thermal non-equilibrium in porous liver during microwave ablation" @default.
- W2041242088 cites W1614691964 @default.
- W2041242088 cites W1948181060 @default.
- W2041242088 cites W1965504779 @default.
- W2041242088 cites W1968439009 @default.
- W2041242088 cites W1970126632 @default.
- W2041242088 cites W1970291241 @default.
- W2041242088 cites W1974174481 @default.
- W2041242088 cites W1975158352 @default.
- W2041242088 cites W1976392377 @default.
- W2041242088 cites W1997312234 @default.
- W2041242088 cites W2001486277 @default.
- W2041242088 cites W2004814811 @default.
- W2041242088 cites W2006445875 @default.
- W2041242088 cites W2008867231 @default.
- W2041242088 cites W2019580281 @default.
- W2041242088 cites W2030350673 @default.
- W2041242088 cites W2037235139 @default.
- W2041242088 cites W2042924814 @default.
- W2041242088 cites W2064638457 @default.
- W2041242088 cites W2071394752 @default.
- W2041242088 cites W2071837609 @default.
- W2041242088 cites W2090012456 @default.
- W2041242088 cites W2091402965 @default.
- W2041242088 cites W2100907010 @default.
- W2041242088 cites W2102302451 @default.
- W2041242088 cites W2108314923 @default.
- W2041242088 cites W2115774540 @default.
- W2041242088 cites W2122946167 @default.
- W2041242088 cites W2129943287 @default.
- W2041242088 cites W2130007306 @default.
- W2041242088 cites W2136177402 @default.
- W2041242088 cites W2141118695 @default.
- W2041242088 cites W2150987558 @default.
- W2041242088 cites W4252599416 @default.
- W2041242088 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.064" @default.
- W2041242088 hasPublicationYear "2013" @default.
- W2041242088 type Work @default.
- W2041242088 sameAs 2041242088 @default.
- W2041242088 citedByCount "51" @default.
- W2041242088 countsByYear W20412420882014 @default.
- W2041242088 countsByYear W20412420882015 @default.
- W2041242088 countsByYear W20412420882016 @default.
- W2041242088 countsByYear W20412420882017 @default.
- W2041242088 countsByYear W20412420882018 @default.
- W2041242088 countsByYear W20412420882019 @default.
- W2041242088 countsByYear W20412420882020 @default.
- W2041242088 countsByYear W20412420882021 @default.
- W2041242088 countsByYear W20412420882022 @default.
- W2041242088 countsByYear W20412420882023 @default.
- W2041242088 crossrefType "journal-article" @default.
- W2041242088 hasAuthorship W2041242088A5003694639 @default.
- W2041242088 hasAuthorship W2041242088A5072464250 @default.
- W2041242088 hasConcept C105569014 @default.
- W2041242088 hasConcept C121332964 @default.
- W2041242088 hasConcept C127413603 @default.
- W2041242088 hasConcept C135628077 @default.
- W2041242088 hasConcept C146978453 @default.
- W2041242088 hasConcept C159985019 @default.
- W2041242088 hasConcept C192562407 @default.
- W2041242088 hasConcept C2778014663 @default.
- W2041242088 hasConcept C2778902805 @default.
- W2041242088 hasConcept C29310469 @default.
- W2041242088 hasConcept C44838205 @default.
- W2041242088 hasConcept C50517652 @default.
- W2041242088 hasConcept C57879066 @default.
- W2041242088 hasConcept C62520636 @default.
- W2041242088 hasConcept C6648577 @default.
- W2041242088 hasConcept C97355855 @default.
- W2041242088 hasConceptScore W2041242088C105569014 @default.
- W2041242088 hasConceptScore W2041242088C121332964 @default.
- W2041242088 hasConceptScore W2041242088C127413603 @default.
- W2041242088 hasConceptScore W2041242088C135628077 @default.
- W2041242088 hasConceptScore W2041242088C146978453 @default.
- W2041242088 hasConceptScore W2041242088C159985019 @default.
- W2041242088 hasConceptScore W2041242088C192562407 @default.
- W2041242088 hasConceptScore W2041242088C2778014663 @default.
- W2041242088 hasConceptScore W2041242088C2778902805 @default.
- W2041242088 hasConceptScore W2041242088C29310469 @default.
- W2041242088 hasConceptScore W2041242088C44838205 @default.
- W2041242088 hasConceptScore W2041242088C50517652 @default.
- W2041242088 hasConceptScore W2041242088C57879066 @default.
- W2041242088 hasConceptScore W2041242088C62520636 @default.
- W2041242088 hasConceptScore W2041242088C6648577 @default.
- W2041242088 hasConceptScore W2041242088C97355855 @default.
- W2041242088 hasLocation W20412420881 @default.
- W2041242088 hasOpenAccess W2041242088 @default.
- W2041242088 hasPrimaryLocation W20412420881 @default.
- W2041242088 hasRelatedWork W1850907620 @default.
- W2041242088 hasRelatedWork W2060156206 @default.
- W2041242088 hasRelatedWork W2362517374 @default.
- W2041242088 hasRelatedWork W2364507892 @default.