Matches in SemOpenAlex for { <https://semopenalex.org/work/W2041543670> ?p ?o ?g. }
- W2041543670 endingPage "256" @default.
- W2041543670 startingPage "247" @default.
- W2041543670 abstract "Several computational methodologies rooted into density-functional theory (DFT) or Møller–Plesset second order perturbation theory (MP2) have been applied to study the anisole–ammonia and anisole–water 1:1 molecular complexes in the ground and first excited electronic states, with special reference to the role of dispersion interactions. Semi-empirical correction to account for dispersion (DFT-D), a recently parameterized semi-local density functional (M05-2X), and long-range correction scheme (LC-ωPBE and LC-PBE-TPSS) have been tested. The results are compared with Coupled-Cluster calculations and with state-of-the-art experimental spectroscopic data. Regarding the ground electronic state, the best description of structures and energies has been achieved by MP2 computations, including a counterpoise correction for the basis-set superposition error. Besides, the density functionals corrected for dispersion have provided qualitative and in some cases also quantitative agreement with the experimental and reference data at a much lower computational cost." @default.
- W2041543670 created "2016-06-24" @default.
- W2041543670 creator A5046788210 @default.
- W2041543670 creator A5076334248 @default.
- W2041543670 creator A5083221636 @default.
- W2041543670 date "2008-05-01" @default.
- W2041543670 modified "2023-10-03" @default.
- W2041543670 title "The role of dispersion correction to DFT for modelling weakly bound molecular complexes in the ground and excited electronic states" @default.
- W2041543670 cites W1498215936 @default.
- W2041543670 cites W1966235871 @default.
- W2041543670 cites W1967411343 @default.
- W2041543670 cites W1971576187 @default.
- W2041543670 cites W1975095068 @default.
- W2041543670 cites W1975155744 @default.
- W2041543670 cites W1976647496 @default.
- W2041543670 cites W1982101094 @default.
- W2041543670 cites W1984318783 @default.
- W2041543670 cites W1993557199 @default.
- W2041543670 cites W2001786168 @default.
- W2041543670 cites W2003193361 @default.
- W2041543670 cites W2006934103 @default.
- W2041543670 cites W2009848407 @default.
- W2041543670 cites W2014015984 @default.
- W2041543670 cites W2022624169 @default.
- W2041543670 cites W2035942888 @default.
- W2041543670 cites W2039833384 @default.
- W2041543670 cites W2044591029 @default.
- W2041543670 cites W2044940178 @default.
- W2041543670 cites W2048631643 @default.
- W2041543670 cites W2048821415 @default.
- W2041543670 cites W2050480585 @default.
- W2041543670 cites W2050890227 @default.
- W2041543670 cites W2051094745 @default.
- W2041543670 cites W2058574018 @default.
- W2041543670 cites W2060491737 @default.
- W2041543670 cites W2061700300 @default.
- W2041543670 cites W2064142965 @default.
- W2041543670 cites W2074715011 @default.
- W2041543670 cites W2076094932 @default.
- W2041543670 cites W2080922008 @default.
- W2041543670 cites W2081199773 @default.
- W2041543670 cites W2081939952 @default.
- W2041543670 cites W2082691688 @default.
- W2041543670 cites W2084281739 @default.
- W2041543670 cites W2089363127 @default.
- W2041543670 cites W2091825943 @default.
- W2041543670 cites W2094186244 @default.
- W2041543670 cites W2096259848 @default.
- W2041543670 cites W2114435676 @default.
- W2041543670 cites W2124835719 @default.
- W2041543670 cites W2139041740 @default.
- W2041543670 cites W2143981217 @default.
- W2041543670 cites W2148941593 @default.
- W2041543670 cites W2171445884 @default.
- W2041543670 cites W2949493985 @default.
- W2041543670 doi "https://doi.org/10.1016/j.chemphys.2008.02.036" @default.
- W2041543670 hasPublicationYear "2008" @default.
- W2041543670 type Work @default.
- W2041543670 sameAs 2041543670 @default.
- W2041543670 citedByCount "76" @default.
- W2041543670 countsByYear W20415436702012 @default.
- W2041543670 countsByYear W20415436702013 @default.
- W2041543670 countsByYear W20415436702014 @default.
- W2041543670 countsByYear W20415436702015 @default.
- W2041543670 countsByYear W20415436702016 @default.
- W2041543670 countsByYear W20415436702017 @default.
- W2041543670 countsByYear W20415436702018 @default.
- W2041543670 countsByYear W20415436702019 @default.
- W2041543670 countsByYear W20415436702020 @default.
- W2041543670 countsByYear W20415436702021 @default.
- W2041543670 countsByYear W20415436702022 @default.
- W2041543670 countsByYear W20415436702023 @default.
- W2041543670 crossrefType "journal-article" @default.
- W2041543670 hasAuthorship W2041543670A5046788210 @default.
- W2041543670 hasAuthorship W2041543670A5076334248 @default.
- W2041543670 hasAuthorship W2041543670A5083221636 @default.
- W2041543670 hasConcept C121332964 @default.
- W2041543670 hasConcept C145148216 @default.
- W2041543670 hasConcept C147597530 @default.
- W2041543670 hasConcept C152365726 @default.
- W2041543670 hasConcept C174256460 @default.
- W2041543670 hasConcept C177562468 @default.
- W2041543670 hasConcept C178790620 @default.
- W2041543670 hasConcept C181500209 @default.
- W2041543670 hasConcept C184779094 @default.
- W2041543670 hasConcept C185592680 @default.
- W2041543670 hasConcept C19637589 @default.
- W2041543670 hasConcept C198291218 @default.
- W2041543670 hasConcept C32909587 @default.
- W2041543670 hasConcept C41999313 @default.
- W2041543670 hasConcept C62520636 @default.
- W2041543670 hasConcept C65956243 @default.
- W2041543670 hasConcept C69523127 @default.
- W2041543670 hasConcept C70747811 @default.
- W2041543670 hasConcept C86025842 @default.
- W2041543670 hasConcept C92664086 @default.
- W2041543670 hasConceptScore W2041543670C121332964 @default.
- W2041543670 hasConceptScore W2041543670C145148216 @default.