Matches in SemOpenAlex for { <https://semopenalex.org/work/W2041807435> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2041807435 endingPage "44" @default.
- W2041807435 startingPage "31" @default.
- W2041807435 abstract "네트워크 기반의 적절한 컴퓨팅은 네트워크 대역폭의 가용성에 의존한다. 백본 네트워크 용량과 액세스 네트워크 상에 심각한 버틀넥이 발생하여 ISP 사업자와 고객 간의 갭이 발생된다면 그만큼 ISP 사업자는 사업에 불이익을 초래할 수 있다. 이러한 상황이 발생되기 이전 ISP 사업자가 트래픽량 예측과 종단간 오버로드가 높은 링크 구간을 감지할 수 있다면 ISP 사업자와 고객 간의 갭은 그만큼 줄어 들 수 있을 것으로 판단된다. 따라서 본 논문은 트래픽량 예측과 종단간 오버로드가 높은 링크 구간을 감지 가능한 소프트웨어로 ACE, ADM, Flow Analysis를 소개한다. 이들 툴을 이용하여 전자상거래의 연속적인 트랜잭션을 실망에서 측정한 후 측정된 네트워크 데이터를 가상 망 환경에 임포트하고 백그라운드 트래픽을 생성한다. 이와 같은 가상 망 환경을 토대로 점차적인 사용자 수 증가에 따른 트래픽량 예측과 링크 로드가 높은 구간을 시뮬레이션 결과로 알 수 있었다. The applicability of network-based computing depends on the availability of the underlying network bandwidth. Such a growing gap between the capacity of the backbone network and the end users' needs results in a serious bottleneck of the access network in between. As a result, ISP incurs disadvantages in their business. If this situation is known to ISP in advance, or if ISP is able to predict traffic volume end-to-end link high-load zone, ISP and end users would be able to decrease the gap for ISP service quality. In this paper, simulation tools, such as ACE, ADM, and Flow Analysis, were used to be able to perceive traffic volume prediction and end-to-end link high-load zone. In using these simulation tools, we were able to estimate sequential transaction in real-network for e-Commerce. We also imported virtual network environment estimated network data, and create background traffic. In a virtual network environment like this, we were able to find out simulation results for traffic volume prediction and end-to-end link high-load zone according to the increase in the number of users based on virtual network environment." @default.
- W2041807435 created "2016-06-24" @default.
- W2041807435 creator A5034603408 @default.
- W2041807435 date "2011-02-28" @default.
- W2041807435 modified "2023-10-18" @default.
- W2041807435 title "A Study on Traffic Volume Prediction for e-Commerce Systems" @default.
- W2041807435 cites W1499545257 @default.
- W2041807435 cites W1970764238 @default.
- W2041807435 cites W1983928840 @default.
- W2041807435 cites W2036980633 @default.
- W2041807435 cites W2102974881 @default.
- W2041807435 cites W2130188868 @default.
- W2041807435 cites W2135106566 @default.
- W2041807435 cites W2144996661 @default.
- W2041807435 cites W2162426951 @default.
- W2041807435 cites W2203757257 @default.
- W2041807435 cites W2515549100 @default.
- W2041807435 cites W3126000902 @default.
- W2041807435 doi "https://doi.org/10.3745/kipstc.2011.18c.1.031" @default.
- W2041807435 hasPublicationYear "2011" @default.
- W2041807435 type Work @default.
- W2041807435 sameAs 2041807435 @default.
- W2041807435 citedByCount "0" @default.
- W2041807435 crossrefType "journal-article" @default.
- W2041807435 hasAuthorship W2041807435A5034603408 @default.
- W2041807435 hasBestOaLocation W20418074351 @default.
- W2041807435 hasConcept C120314980 @default.
- W2041807435 hasConcept C121332964 @default.
- W2041807435 hasConcept C127413603 @default.
- W2041807435 hasConcept C139940560 @default.
- W2041807435 hasConcept C149635348 @default.
- W2041807435 hasConcept C158379750 @default.
- W2041807435 hasConcept C168443057 @default.
- W2041807435 hasConcept C176715033 @default.
- W2041807435 hasConcept C201100257 @default.
- W2041807435 hasConcept C20556612 @default.
- W2041807435 hasConcept C22212356 @default.
- W2041807435 hasConcept C2776257435 @default.
- W2041807435 hasConcept C2780513914 @default.
- W2041807435 hasConcept C31258907 @default.
- W2041807435 hasConcept C41008148 @default.
- W2041807435 hasConcept C62520636 @default.
- W2041807435 hasConcept C75949130 @default.
- W2041807435 hasConcept C77088390 @default.
- W2041807435 hasConcept C94168897 @default.
- W2041807435 hasConceptScore W2041807435C120314980 @default.
- W2041807435 hasConceptScore W2041807435C121332964 @default.
- W2041807435 hasConceptScore W2041807435C127413603 @default.
- W2041807435 hasConceptScore W2041807435C139940560 @default.
- W2041807435 hasConceptScore W2041807435C149635348 @default.
- W2041807435 hasConceptScore W2041807435C158379750 @default.
- W2041807435 hasConceptScore W2041807435C168443057 @default.
- W2041807435 hasConceptScore W2041807435C176715033 @default.
- W2041807435 hasConceptScore W2041807435C201100257 @default.
- W2041807435 hasConceptScore W2041807435C20556612 @default.
- W2041807435 hasConceptScore W2041807435C22212356 @default.
- W2041807435 hasConceptScore W2041807435C2776257435 @default.
- W2041807435 hasConceptScore W2041807435C2780513914 @default.
- W2041807435 hasConceptScore W2041807435C31258907 @default.
- W2041807435 hasConceptScore W2041807435C41008148 @default.
- W2041807435 hasConceptScore W2041807435C62520636 @default.
- W2041807435 hasConceptScore W2041807435C75949130 @default.
- W2041807435 hasConceptScore W2041807435C77088390 @default.
- W2041807435 hasConceptScore W2041807435C94168897 @default.
- W2041807435 hasIssue "1" @default.
- W2041807435 hasLocation W20418074351 @default.
- W2041807435 hasOpenAccess W2041807435 @default.
- W2041807435 hasPrimaryLocation W20418074351 @default.
- W2041807435 hasRelatedWork W1970919106 @default.
- W2041807435 hasRelatedWork W2004523358 @default.
- W2041807435 hasRelatedWork W2036017640 @default.
- W2041807435 hasRelatedWork W2041807435 @default.
- W2041807435 hasRelatedWork W2125971215 @default.
- W2041807435 hasRelatedWork W2352713638 @default.
- W2041807435 hasRelatedWork W2374980776 @default.
- W2041807435 hasRelatedWork W2612734354 @default.
- W2041807435 hasRelatedWork W3141970871 @default.
- W2041807435 hasRelatedWork W3195411348 @default.
- W2041807435 hasVolume "18C" @default.
- W2041807435 isParatext "false" @default.
- W2041807435 isRetracted "false" @default.
- W2041807435 magId "2041807435" @default.
- W2041807435 workType "article" @default.