Matches in SemOpenAlex for { <https://semopenalex.org/work/W2042182508> ?p ?o ?g. }
- W2042182508 endingPage "339" @default.
- W2042182508 startingPage "329" @default.
- W2042182508 abstract "Big sensor data is prevalent in both industry and scientific research applications where the data is generated with high volume and velocity it is difficult to process using on-hand database management tools or traditional data processing applications. Cloud computing provides a promising platform to support the addressing of this challenge as it provides a flexible stack of massive computing, storage, and software services in a scalable manner at low cost. Some techniques have been developed in recent years for processing sensor data on cloud, such as sensor-cloud. However, these techniques do not provide efficient support on fast detection and locating of errors in big sensor data sets. For fast data error detection in big sensor data sets, in this paper, we develop a novel data error detection approach which exploits the full computation potential of cloud platform and the network feature of WSN. Firstly, a set of sensor data error types are classified and defined. Based on that classification, the network feature of a clustered WSN is introduced and analyzed to support fast error detection and location. Specifically, in our proposed approach, the error detection is based on the scale-free network topology and most of detection operations can be conducted in limited temporal or spatial data blocks instead of a whole big data set. Hence the detection and location process can be dramatically accelerated. Furthermore, the detection and location tasks can be distributed to cloud platform to fully exploit the computation power and massive storage. Through the experiment on our cloud computing platform of U-Cloud, it is demonstrated that our proposed approach can significantly reduce the time for error detection and location in big data sets generated by large scale sensor network systems with acceptable error detecting accuracy." @default.
- W2042182508 created "2016-06-24" @default.
- W2042182508 creator A5022256556 @default.
- W2042182508 creator A5059919967 @default.
- W2042182508 creator A5076120553 @default.
- W2042182508 creator A5081176735 @default.
- W2042182508 creator A5082256444 @default.
- W2042182508 date "2015-02-01" @default.
- W2042182508 modified "2023-10-16" @default.
- W2042182508 title "A Time Efficient Approach for Detecting Errors in Big Sensor Data on Cloud" @default.
- W2042182508 cites W1559557989 @default.
- W2042182508 cites W1656486128 @default.
- W2042182508 cites W1970225139 @default.
- W2042182508 cites W1975593772 @default.
- W2042182508 cites W1977367431 @default.
- W2042182508 cites W1980981922 @default.
- W2042182508 cites W2002643280 @default.
- W2042182508 cites W2003906223 @default.
- W2042182508 cites W2004261580 @default.
- W2042182508 cites W2014238766 @default.
- W2042182508 cites W2019724001 @default.
- W2042182508 cites W2024404542 @default.
- W2042182508 cites W2044936152 @default.
- W2042182508 cites W2050123402 @default.
- W2042182508 cites W2059133904 @default.
- W2042182508 cites W2065180054 @default.
- W2042182508 cites W2078656587 @default.
- W2042182508 cites W2079211769 @default.
- W2042182508 cites W2081416313 @default.
- W2042182508 cites W2082945266 @default.
- W2042182508 cites W2103002476 @default.
- W2042182508 cites W2110173188 @default.
- W2042182508 cites W2114296561 @default.
- W2042182508 cites W2121142115 @default.
- W2042182508 cites W2124624981 @default.
- W2042182508 cites W2139646386 @default.
- W2042182508 cites W2150015649 @default.
- W2042182508 cites W2150502657 @default.
- W2042182508 cites W2155909634 @default.
- W2042182508 cites W2163154541 @default.
- W2042182508 cites W2164040995 @default.
- W2042182508 cites W3103071483 @default.
- W2042182508 cites W4236154462 @default.
- W2042182508 doi "https://doi.org/10.1109/tpds.2013.2295810" @default.
- W2042182508 hasPublicationYear "2015" @default.
- W2042182508 type Work @default.
- W2042182508 sameAs 2042182508 @default.
- W2042182508 citedByCount "69" @default.
- W2042182508 countsByYear W20421825082014 @default.
- W2042182508 countsByYear W20421825082015 @default.
- W2042182508 countsByYear W20421825082016 @default.
- W2042182508 countsByYear W20421825082017 @default.
- W2042182508 countsByYear W20421825082018 @default.
- W2042182508 countsByYear W20421825082019 @default.
- W2042182508 countsByYear W20421825082020 @default.
- W2042182508 countsByYear W20421825082021 @default.
- W2042182508 countsByYear W20421825082022 @default.
- W2042182508 crossrefType "journal-article" @default.
- W2042182508 hasAuthorship W2042182508A5022256556 @default.
- W2042182508 hasAuthorship W2042182508A5059919967 @default.
- W2042182508 hasAuthorship W2042182508A5076120553 @default.
- W2042182508 hasAuthorship W2042182508A5081176735 @default.
- W2042182508 hasAuthorship W2042182508A5082256444 @default.
- W2042182508 hasConcept C111919701 @default.
- W2042182508 hasConcept C120314980 @default.
- W2042182508 hasConcept C124101348 @default.
- W2042182508 hasConcept C165696696 @default.
- W2042182508 hasConcept C24590314 @default.
- W2042182508 hasConcept C31258907 @default.
- W2042182508 hasConcept C38652104 @default.
- W2042182508 hasConcept C41008148 @default.
- W2042182508 hasConcept C48044578 @default.
- W2042182508 hasConcept C75684735 @default.
- W2042182508 hasConcept C77088390 @default.
- W2042182508 hasConcept C79403827 @default.
- W2042182508 hasConcept C79974875 @default.
- W2042182508 hasConcept C98045186 @default.
- W2042182508 hasConceptScore W2042182508C111919701 @default.
- W2042182508 hasConceptScore W2042182508C120314980 @default.
- W2042182508 hasConceptScore W2042182508C124101348 @default.
- W2042182508 hasConceptScore W2042182508C165696696 @default.
- W2042182508 hasConceptScore W2042182508C24590314 @default.
- W2042182508 hasConceptScore W2042182508C31258907 @default.
- W2042182508 hasConceptScore W2042182508C38652104 @default.
- W2042182508 hasConceptScore W2042182508C41008148 @default.
- W2042182508 hasConceptScore W2042182508C48044578 @default.
- W2042182508 hasConceptScore W2042182508C75684735 @default.
- W2042182508 hasConceptScore W2042182508C77088390 @default.
- W2042182508 hasConceptScore W2042182508C79403827 @default.
- W2042182508 hasConceptScore W2042182508C79974875 @default.
- W2042182508 hasConceptScore W2042182508C98045186 @default.
- W2042182508 hasIssue "2" @default.
- W2042182508 hasLocation W20421825081 @default.
- W2042182508 hasOpenAccess W2042182508 @default.
- W2042182508 hasPrimaryLocation W20421825081 @default.
- W2042182508 hasRelatedWork W1596010778 @default.
- W2042182508 hasRelatedWork W1969164381 @default.
- W2042182508 hasRelatedWork W2020017125 @default.