Matches in SemOpenAlex for { <https://semopenalex.org/work/W2042284737> ?p ?o ?g. }
- W2042284737 endingPage "396" @default.
- W2042284737 startingPage "363" @default.
- W2042284737 abstract "The variation in soil texture, surface moisture or vertical soil moisture gradient in larger scale atmospheric models may lead to significant variations in simulated surface fluxes of water and heat. The parameterization of soil moisture fluxes at spatial scales compatible with the grid size of distributed hydrological models and mesoscale atmospheric models (∼ 100 km2) faces principal problems which relate to the underlying microscopic or field scale heterogeneity in soil characteristics. The most widely used parameterization in soil hydrology, the Darcy-Richards (DR) equation, is gaining increasing importance in mesoscale and climate modelling. This is mainly due to the need to introduce plant-interactive soil water depletion and stomatal conductance parameterizations and to improve the calculation of deep percolation and runoff. Covering a grid of several hundreds of square kilometres, the DR parameterization in soil-vegetation-atmosphere-transfer schemes (SVATs) is assumed to be scale-invariant. The parameters describing the non-linear, area-average soil hydraulic functions in this scale-invariant DR-equation should be treated as calibration-parameters, which do not necessarily have a physical meaning. The saturated hydraulic conductivity is one of the soil parameters to which the models show very high sensitivity. It is shown that saturated hydraulic conductivity can be scaled in both vertical and horizontal directions for large flow domains. In this paper, a distinction is made between effective and aggregated soil parameters. Effective parameters are defined as area-average values or distributions over a domain with a single, distinct textural soil type. They can be obtained by scaling or inverse modelling. Aggregated soil parameters represent grid-domains with several textural soil types. In soil science dimensional methods have been developed to scale up soil hydraulic characteristics. With some specific assumptions, these techniques can be extrapolated from classical field-scale problems in soil heterogeneity to larger domains, compatible with the grid-size of large scale models. Particularly promising is the estimation of effective soil hydraulic parameters from area averaging measurements through inverse modelling of the unsaturated flow. Techniques to scale and aggregate the soil characteristics presented in this paper qualify for direct or indirect use in large scale meteorological models. One of the interesting results is the effective behaviour of the reference curve, which can be obtained from similar media scaling. If the conclusions of this paper survive further studies, a relatively simple method will become available to parameterize soil variability at large scales. The inverse technique is found to provide effective soil parameters which perform well in predicting both the area-average evaporation and the area-average soil moisture fluxes, such as subsurface runoff. This is not the case for aggregated soil parameters. Obtained from regression relationships between soil textural composition and hydraulic characteristics, these aggregated parameters predict evaporation fluxes well, but fail to predict water balance terms such as percolation and runoff. This is a serious drawback which could eventually hamper the improvement of the representation of the hydrological cycle in mesoscale atmospheric models and in GCMs." @default.
- W2042284737 created "2016-06-24" @default.
- W2042284737 creator A5024800202 @default.
- W2042284737 creator A5025509217 @default.
- W2042284737 creator A5084837009 @default.
- W2042284737 date "1997-03-01" @default.
- W2042284737 modified "2023-09-27" @default.
- W2042284737 title "The scaling characteristics of soil parameters: From plot scale heterogeneity to subgrid parameterization" @default.
- W2042284737 cites W1499644114 @default.
- W2042284737 cites W1964315169 @default.
- W2042284737 cites W1965885041 @default.
- W2042284737 cites W1978658717 @default.
- W2042284737 cites W1978868134 @default.
- W2042284737 cites W1981012537 @default.
- W2042284737 cites W1984390217 @default.
- W2042284737 cites W1993329547 @default.
- W2042284737 cites W1994954836 @default.
- W2042284737 cites W1999912444 @default.
- W2042284737 cites W2006351392 @default.
- W2042284737 cites W2008293804 @default.
- W2042284737 cites W2010206127 @default.
- W2042284737 cites W2014418144 @default.
- W2042284737 cites W2014961928 @default.
- W2042284737 cites W2017245165 @default.
- W2042284737 cites W2020058065 @default.
- W2042284737 cites W2025129606 @default.
- W2042284737 cites W2029940944 @default.
- W2042284737 cites W2043217382 @default.
- W2042284737 cites W2052031072 @default.
- W2042284737 cites W2060921375 @default.
- W2042284737 cites W2065606540 @default.
- W2042284737 cites W2066104962 @default.
- W2042284737 cites W2072429863 @default.
- W2042284737 cites W2083358236 @default.
- W2042284737 cites W2087070363 @default.
- W2042284737 cites W2087105362 @default.
- W2042284737 cites W2096874741 @default.
- W2042284737 cites W2102422378 @default.
- W2042284737 cites W2104084533 @default.
- W2042284737 cites W2106997813 @default.
- W2042284737 cites W2113397895 @default.
- W2042284737 cites W2123833641 @default.
- W2042284737 cites W2144530683 @default.
- W2042284737 cites W2151940482 @default.
- W2042284737 cites W2152328228 @default.
- W2042284737 cites W2153988951 @default.
- W2042284737 cites W2162604832 @default.
- W2042284737 cites W2164202741 @default.
- W2042284737 cites W2165552353 @default.
- W2042284737 cites W2171213862 @default.
- W2042284737 cites W2172360614 @default.
- W2042284737 cites W4230732587 @default.
- W2042284737 doi "https://doi.org/10.1016/s0022-1694(96)03134-4" @default.
- W2042284737 hasPublicationYear "1997" @default.
- W2042284737 type Work @default.
- W2042284737 sameAs 2042284737 @default.
- W2042284737 citedByCount "97" @default.
- W2042284737 countsByYear W20422847372012 @default.
- W2042284737 countsByYear W20422847372013 @default.
- W2042284737 countsByYear W20422847372014 @default.
- W2042284737 countsByYear W20422847372015 @default.
- W2042284737 countsByYear W20422847372016 @default.
- W2042284737 countsByYear W20422847372017 @default.
- W2042284737 countsByYear W20422847372018 @default.
- W2042284737 countsByYear W20422847372019 @default.
- W2042284737 countsByYear W20422847372020 @default.
- W2042284737 countsByYear W20422847372021 @default.
- W2042284737 countsByYear W20422847372022 @default.
- W2042284737 crossrefType "journal-article" @default.
- W2042284737 hasAuthorship W2042284737A5024800202 @default.
- W2042284737 hasAuthorship W2042284737A5025509217 @default.
- W2042284737 hasAuthorship W2042284737A5084837009 @default.
- W2042284737 hasConcept C103272765 @default.
- W2042284737 hasConcept C121332964 @default.
- W2042284737 hasConcept C127313418 @default.
- W2042284737 hasConcept C153294291 @default.
- W2042284737 hasConcept C153400128 @default.
- W2042284737 hasConcept C159390177 @default.
- W2042284737 hasConcept C159750122 @default.
- W2042284737 hasConcept C164285268 @default.
- W2042284737 hasConcept C175963888 @default.
- W2042284737 hasConcept C187320778 @default.
- W2042284737 hasConcept C18903297 @default.
- W2042284737 hasConcept C24939127 @default.
- W2042284737 hasConcept C2524010 @default.
- W2042284737 hasConcept C33923547 @default.
- W2042284737 hasConcept C39432304 @default.
- W2042284737 hasConcept C40382383 @default.
- W2042284737 hasConcept C49204034 @default.
- W2042284737 hasConcept C50477045 @default.
- W2042284737 hasConcept C63184880 @default.
- W2042284737 hasConcept C76886044 @default.
- W2042284737 hasConcept C86803240 @default.
- W2042284737 hasConcept C99844830 @default.
- W2042284737 hasConceptScore W2042284737C103272765 @default.
- W2042284737 hasConceptScore W2042284737C121332964 @default.
- W2042284737 hasConceptScore W2042284737C127313418 @default.
- W2042284737 hasConceptScore W2042284737C153294291 @default.