Matches in SemOpenAlex for { <https://semopenalex.org/work/W2042516441> ?p ?o ?g. }
- W2042516441 endingPage "719" @default.
- W2042516441 startingPage "702" @default.
- W2042516441 abstract "We describe a powerful technique to model and interpret the stellar line-of-sight velocity profiles of galaxies. It is based on Schwarzschild's approach to build fully general dynamical models. A representative library of orbits is calculated in a given potential, and the non-negative superposition of these orbits is determined that best fits a given set of observational constraints. The most significant new feature of our implementation is that we calculate and fit the full velocity profile shapes, represented by a Gauss-Hermite series. This allows us to constrain the orbital anisotropy in the fit. We also use an objective χ2 measure for the quality of fit, taking into account the error on each observational constraint. Given χ2 from the observational constraints, the technique assesses the relative likelihood of different orbit combinations in a given potential, and of models with different potentials. In our implementation only projected, observable quantities are included in the fit, aperture binning and seeing convolution of the data are properly taken into account, and smoothness of the models in phase space can be enforced through regularization. This scheme is valid for any geometry. In a first application of this method, we focus here on spherical geometry; axisymmetric modeling is described in companion papers by Cretton et al. and van der Marel et al. We test the scheme on pseudo-data drawn from an isotropic Hernquist model and then apply it to the issue of dark halos around elliptical galaxies. We model radially extended stellar kinematical data for the E0 galaxy NGC 2434 obtained by Carollo et al. This galaxy was chosen because it may be nearly round, in which case the present spherical modeling is applicable. Models with constant mass-to-light ratio are clearly ruled out, regardless of the orbital anisotropy. To study the amount of dark matter needed to match the data, we considered a sequence of cosmologically motivated + potentials. These potentials are based on the CDM simulations by Navarro et al., but also account for the accumulation of baryonic matter; they are specified by the stellar mass-to-light ratio *,B and the characteristic halo velocity, V200. The star + halo models provide an excellent fit to the data, with *,B = 4.35 ± 0.35 (in B-band solar units) and V200 = 450 ± 100 km s-1. The best-fitting potential has a circular velocity Vc that is constant to within ~10% between 0.2 and 3 effective radii and is very similar to the best-fitting logarithmic potential, which has Vc = 300 ± 15 km s-1. In NGC 2434 roughly half of the mass within an effective radius is dark. In comparison, our models without a dark halo estimate a mass-to-light ratio for the stellar population that is twice as large. If NGC 2434 is a significantly flattened system seen nearly face-on, it would be considerably more difficult to limit the gravitational potential without further observational constraints." @default.
- W2042516441 created "2016-06-24" @default.
- W2042516441 creator A5006034151 @default.
- W2042516441 creator A5031687927 @default.
- W2042516441 creator A5034718849 @default.
- W2042516441 creator A5051017008 @default.
- W2042516441 creator A5064497354 @default.
- W2042516441 date "1997-10-20" @default.
- W2042516441 modified "2023-10-14" @default.
- W2042516441 title "Dynamical Modeling of Velocity Profiles: The Dark Halo around the Elliptical Galaxy NGC 2434" @default.
- W2042516441 cites W1772193076 @default.
- W2042516441 cites W1963754183 @default.
- W2042516441 cites W1968927799 @default.
- W2042516441 cites W1971074558 @default.
- W2042516441 cites W1972406428 @default.
- W2042516441 cites W1987981208 @default.
- W2042516441 cites W1993491800 @default.
- W2042516441 cites W2002544764 @default.
- W2042516441 cites W2003901792 @default.
- W2042516441 cites W2008856417 @default.
- W2042516441 cites W2012747253 @default.
- W2042516441 cites W2017178362 @default.
- W2042516441 cites W2021385080 @default.
- W2042516441 cites W2021930075 @default.
- W2042516441 cites W2023356633 @default.
- W2042516441 cites W2025408786 @default.
- W2042516441 cites W2025603133 @default.
- W2042516441 cites W2031297521 @default.
- W2042516441 cites W2031825346 @default.
- W2042516441 cites W2035824928 @default.
- W2042516441 cites W2038820954 @default.
- W2042516441 cites W2039221335 @default.
- W2042516441 cites W2040778958 @default.
- W2042516441 cites W2041265136 @default.
- W2042516441 cites W2041542911 @default.
- W2042516441 cites W2042516441 @default.
- W2042516441 cites W2045839607 @default.
- W2042516441 cites W2048101337 @default.
- W2042516441 cites W2050313257 @default.
- W2042516441 cites W2060078162 @default.
- W2042516441 cites W2062598722 @default.
- W2042516441 cites W2064407408 @default.
- W2042516441 cites W2065062607 @default.
- W2042516441 cites W2066745291 @default.
- W2042516441 cites W2072795524 @default.
- W2042516441 cites W2074966866 @default.
- W2042516441 cites W2083950714 @default.
- W2042516441 cites W2084691636 @default.
- W2042516441 cites W2086535097 @default.
- W2042516441 cites W2087802453 @default.
- W2042516441 cites W2088921636 @default.
- W2042516441 cites W2103556586 @default.
- W2042516441 cites W2109634841 @default.
- W2042516441 cites W3027676188 @default.
- W2042516441 cites W3103877238 @default.
- W2042516441 cites W4243726360 @default.
- W2042516441 cites W66838134 @default.
- W2042516441 doi "https://doi.org/10.1086/304733" @default.
- W2042516441 hasPublicationYear "1997" @default.
- W2042516441 type Work @default.
- W2042516441 sameAs 2042516441 @default.
- W2042516441 citedByCount "279" @default.
- W2042516441 countsByYear W20425164412012 @default.
- W2042516441 countsByYear W20425164412013 @default.
- W2042516441 countsByYear W20425164412014 @default.
- W2042516441 countsByYear W20425164412015 @default.
- W2042516441 countsByYear W20425164412016 @default.
- W2042516441 countsByYear W20425164412017 @default.
- W2042516441 countsByYear W20425164412018 @default.
- W2042516441 countsByYear W20425164412019 @default.
- W2042516441 countsByYear W20425164412020 @default.
- W2042516441 countsByYear W20425164412021 @default.
- W2042516441 countsByYear W20425164412022 @default.
- W2042516441 countsByYear W20425164412023 @default.
- W2042516441 crossrefType "journal-article" @default.
- W2042516441 hasAuthorship W2042516441A5006034151 @default.
- W2042516441 hasAuthorship W2042516441A5031687927 @default.
- W2042516441 hasAuthorship W2042516441A5034718849 @default.
- W2042516441 hasAuthorship W2042516441A5051017008 @default.
- W2042516441 hasAuthorship W2042516441A5064497354 @default.
- W2042516441 hasBestOaLocation W20425164411 @default.
- W2042516441 hasConcept C121332964 @default.
- W2042516441 hasConcept C1276947 @default.
- W2042516441 hasConcept C150846664 @default.
- W2042516441 hasConcept C159249277 @default.
- W2042516441 hasConcept C184665706 @default.
- W2042516441 hasConcept C41074950 @default.
- W2042516441 hasConcept C44870925 @default.
- W2042516441 hasConcept C48387981 @default.
- W2042516441 hasConcept C871022 @default.
- W2042516441 hasConcept C88148261 @default.
- W2042516441 hasConcept C98444146 @default.
- W2042516441 hasConceptScore W2042516441C121332964 @default.
- W2042516441 hasConceptScore W2042516441C1276947 @default.
- W2042516441 hasConceptScore W2042516441C150846664 @default.
- W2042516441 hasConceptScore W2042516441C159249277 @default.
- W2042516441 hasConceptScore W2042516441C184665706 @default.
- W2042516441 hasConceptScore W2042516441C41074950 @default.