Matches in SemOpenAlex for { <https://semopenalex.org/work/W2042600283> ?p ?o ?g. }
- W2042600283 endingPage "335" @default.
- W2042600283 startingPage "329" @default.
- W2042600283 abstract "Visible and near infrared reflectance (Vis-NIR, 350 to 1800 nm), and near infrared transmittance (NIT, 850 to 1050 nm) spectroscopy were used to predict beef quality traits of intact and ground meat samples. Calibration equations were developed from reference data (n = 312) of pH, color traits (L*, a*, and b*), ageing loss (%), cooking loss (%), and Warner–Bratzler shear force (WBSF, N) using partial least squares regressions. Predictive ability of the models was assessed by coefficient of determination of cross-validation (R2CV) and root mean square error of cross-validation. Quality traits were better predicted on intact than on ground samples, and the best results were obtained using Vis-NIR spectroscopy. Predictions were good (R2CV = 0.62 to 0.73) for pH, L*, and a*, hardly sufficient (R2CV = 0.34 to 0.60) for b*, cooking loss, and WBSF, and unsatisfactory for ageing loss (R2CV = 0.15). Vis-NIR spectroscopy might be used to predict some physical beef quality traits on intact meat samples." @default.
- W2042600283 created "2016-06-24" @default.
- W2042600283 creator A5006624985 @default.
- W2042600283 creator A5027487675 @default.
- W2042600283 creator A5060368106 @default.
- W2042600283 creator A5084740655 @default.
- W2042600283 date "2013-02-01" @default.
- W2042600283 modified "2023-10-18" @default.
- W2042600283 title "The relevance of different near infrared technologies and sample treatments for predicting meat quality traits in commercial beef cuts" @default.
- W2042600283 cites W1968043212 @default.
- W2042600283 cites W1975724774 @default.
- W2042600283 cites W1977987897 @default.
- W2042600283 cites W1986344429 @default.
- W2042600283 cites W1989366050 @default.
- W2042600283 cites W1994651839 @default.
- W2042600283 cites W1996713985 @default.
- W2042600283 cites W1996997839 @default.
- W2042600283 cites W2001916668 @default.
- W2042600283 cites W2009772645 @default.
- W2042600283 cites W2010809423 @default.
- W2042600283 cites W2016090050 @default.
- W2042600283 cites W2016816890 @default.
- W2042600283 cites W2017213292 @default.
- W2042600283 cites W2021541866 @default.
- W2042600283 cites W2022361466 @default.
- W2042600283 cites W2023137435 @default.
- W2042600283 cites W2023694558 @default.
- W2042600283 cites W2034778619 @default.
- W2042600283 cites W2045579008 @default.
- W2042600283 cites W2048308325 @default.
- W2042600283 cites W2058453733 @default.
- W2042600283 cites W2059271138 @default.
- W2042600283 cites W2060881812 @default.
- W2042600283 cites W2065084513 @default.
- W2042600283 cites W2065616117 @default.
- W2042600283 cites W2068128918 @default.
- W2042600283 cites W2073615785 @default.
- W2042600283 cites W2078919324 @default.
- W2042600283 cites W2080581136 @default.
- W2042600283 cites W2081162039 @default.
- W2042600283 cites W2085485330 @default.
- W2042600283 cites W2087287436 @default.
- W2042600283 cites W2092855406 @default.
- W2042600283 cites W2093026864 @default.
- W2042600283 cites W2111467530 @default.
- W2042600283 cites W2113418007 @default.
- W2042600283 cites W2134356099 @default.
- W2042600283 cites W2144013022 @default.
- W2042600283 cites W2147202435 @default.
- W2042600283 cites W2147413965 @default.
- W2042600283 cites W2150644038 @default.
- W2042600283 cites W2158083867 @default.
- W2042600283 cites W2164376474 @default.
- W2042600283 cites W2166160915 @default.
- W2042600283 doi "https://doi.org/10.1016/j.meatsci.2012.09.013" @default.
- W2042600283 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23098602" @default.
- W2042600283 hasPublicationYear "2013" @default.
- W2042600283 type Work @default.
- W2042600283 sameAs 2042600283 @default.
- W2042600283 citedByCount "35" @default.
- W2042600283 countsByYear W20426002832013 @default.
- W2042600283 countsByYear W20426002832014 @default.
- W2042600283 countsByYear W20426002832015 @default.
- W2042600283 countsByYear W20426002832017 @default.
- W2042600283 countsByYear W20426002832018 @default.
- W2042600283 countsByYear W20426002832019 @default.
- W2042600283 countsByYear W20426002832020 @default.
- W2042600283 countsByYear W20426002832021 @default.
- W2042600283 countsByYear W20426002832022 @default.
- W2042600283 countsByYear W20426002832023 @default.
- W2042600283 crossrefType "journal-article" @default.
- W2042600283 hasAuthorship W2042600283A5006624985 @default.
- W2042600283 hasAuthorship W2042600283A5027487675 @default.
- W2042600283 hasAuthorship W2042600283A5060368106 @default.
- W2042600283 hasAuthorship W2042600283A5084740655 @default.
- W2042600283 hasConcept C105795698 @default.
- W2042600283 hasConcept C128990827 @default.
- W2042600283 hasConcept C169760540 @default.
- W2042600283 hasConcept C185592680 @default.
- W2042600283 hasConcept C22354355 @default.
- W2042600283 hasConcept C2780003869 @default.
- W2042600283 hasConcept C31903555 @default.
- W2042600283 hasConcept C33923547 @default.
- W2042600283 hasConcept C43571822 @default.
- W2042600283 hasConcept C86803240 @default.
- W2042600283 hasConceptScore W2042600283C105795698 @default.
- W2042600283 hasConceptScore W2042600283C128990827 @default.
- W2042600283 hasConceptScore W2042600283C169760540 @default.
- W2042600283 hasConceptScore W2042600283C185592680 @default.
- W2042600283 hasConceptScore W2042600283C22354355 @default.
- W2042600283 hasConceptScore W2042600283C2780003869 @default.
- W2042600283 hasConceptScore W2042600283C31903555 @default.
- W2042600283 hasConceptScore W2042600283C33923547 @default.
- W2042600283 hasConceptScore W2042600283C43571822 @default.
- W2042600283 hasConceptScore W2042600283C86803240 @default.
- W2042600283 hasIssue "2" @default.
- W2042600283 hasLocation W20426002831 @default.
- W2042600283 hasLocation W20426002832 @default.