Matches in SemOpenAlex for { <https://semopenalex.org/work/W2042727501> ?p ?o ?g. }
- W2042727501 endingPage "256" @default.
- W2042727501 startingPage "242" @default.
- W2042727501 abstract "In embedded computing, typically some form of silicon area or power budget restricts the potential performance achievable. For algorithms with limited dynamic range, custom hardware accelerators manage to extract significant additional performance for such a budget via mapping operations in the algorithm to fixed-point. However, for complex applications requiring floating-point computation, the potential performance improvement over software is reduced. Nonetheless, custom hardware can still customize the precision of floating-point operators, unlike software which is restricted to IEEE standard single or double precision, to increase the overall performance at the cost of increasing the error observed in the final computational result. Unfortunately, because it is difficult to determine if this error increase is tolerable, this task is rarely performed. We present a new analytical technique to calculate bounds on the range or relative error of output variables, enabling custom hardware accelerators to be tolerant of floating point errors by design. In contrast to existing tools that perform this task, our approach scales to larger examples and obtains tighter bounds, within a smaller execution time. Furthermore, it allows a user to trade the quality of bounds with execution time of the procedure, making it suitable for both small and large-scale algorithms." @default.
- W2042727501 created "2016-06-24" @default.
- W2042727501 creator A5009305656 @default.
- W2042727501 creator A5029829952 @default.
- W2042727501 date "2013-02-01" @default.
- W2042727501 modified "2023-09-24" @default.
- W2042727501 title "A Scalable Precision Analysis Framework" @default.
- W2042727501 cites W1512732958 @default.
- W2042727501 cites W1527834376 @default.
- W2042727501 cites W1534118295 @default.
- W2042727501 cites W1557486844 @default.
- W2042727501 cites W1561941139 @default.
- W2042727501 cites W1583871653 @default.
- W2042727501 cites W1656620728 @default.
- W2042727501 cites W1657697086 @default.
- W2042727501 cites W1827246489 @default.
- W2042727501 cites W1867721554 @default.
- W2042727501 cites W1898422521 @default.
- W2042727501 cites W1986396242 @default.
- W2042727501 cites W1994417982 @default.
- W2042727501 cites W1995574761 @default.
- W2042727501 cites W2022020111 @default.
- W2042727501 cites W2043168911 @default.
- W2042727501 cites W2061171222 @default.
- W2042727501 cites W2075412885 @default.
- W2042727501 cites W2077364582 @default.
- W2042727501 cites W2083553720 @default.
- W2042727501 cites W2088106051 @default.
- W2042727501 cites W2093501430 @default.
- W2042727501 cites W2096059450 @default.
- W2042727501 cites W2104037155 @default.
- W2042727501 cites W2115002670 @default.
- W2042727501 cites W2117355058 @default.
- W2042727501 cites W2118230018 @default.
- W2042727501 cites W2124408528 @default.
- W2042727501 cites W2126186511 @default.
- W2042727501 cites W2133649162 @default.
- W2042727501 cites W2135769545 @default.
- W2042727501 cites W2142880425 @default.
- W2042727501 cites W2147866813 @default.
- W2042727501 cites W2152567198 @default.
- W2042727501 cites W2153316377 @default.
- W2042727501 cites W2156330264 @default.
- W2042727501 cites W2158223566 @default.
- W2042727501 cites W2166026358 @default.
- W2042727501 cites W2169941994 @default.
- W2042727501 cites W2171319130 @default.
- W2042727501 cites W2171404670 @default.
- W2042727501 cites W2273879208 @default.
- W2042727501 cites W285242605 @default.
- W2042727501 cites W3150959508 @default.
- W2042727501 cites W362909436 @default.
- W2042727501 cites W215503912 @default.
- W2042727501 doi "https://doi.org/10.1109/tmm.2012.2231666" @default.
- W2042727501 hasPublicationYear "2013" @default.
- W2042727501 type Work @default.
- W2042727501 sameAs 2042727501 @default.
- W2042727501 citedByCount "11" @default.
- W2042727501 countsByYear W20427275012013 @default.
- W2042727501 countsByYear W20427275012015 @default.
- W2042727501 countsByYear W20427275012016 @default.
- W2042727501 countsByYear W20427275012017 @default.
- W2042727501 countsByYear W20427275012018 @default.
- W2042727501 countsByYear W20427275012020 @default.
- W2042727501 countsByYear W20427275012022 @default.
- W2042727501 crossrefType "journal-article" @default.
- W2042727501 hasAuthorship W2042727501A5009305656 @default.
- W2042727501 hasAuthorship W2042727501A5029829952 @default.
- W2042727501 hasBestOaLocation W20427275012 @default.
- W2042727501 hasConcept C113775141 @default.
- W2042727501 hasConcept C11413529 @default.
- W2042727501 hasConcept C149635348 @default.
- W2042727501 hasConcept C159985019 @default.
- W2042727501 hasConcept C162324750 @default.
- W2042727501 hasConcept C173608175 @default.
- W2042727501 hasConcept C187736073 @default.
- W2042727501 hasConcept C192562407 @default.
- W2042727501 hasConcept C199360897 @default.
- W2042727501 hasConcept C204323151 @default.
- W2042727501 hasConcept C2524010 @default.
- W2042727501 hasConcept C2777904410 @default.
- W2042727501 hasConcept C2780451532 @default.
- W2042727501 hasConcept C28719098 @default.
- W2042727501 hasConcept C33923547 @default.
- W2042727501 hasConcept C35912277 @default.
- W2042727501 hasConcept C41008148 @default.
- W2042727501 hasConcept C45374587 @default.
- W2042727501 hasConcept C48044578 @default.
- W2042727501 hasConcept C77088390 @default.
- W2042727501 hasConcept C84211073 @default.
- W2042727501 hasConceptScore W2042727501C113775141 @default.
- W2042727501 hasConceptScore W2042727501C11413529 @default.
- W2042727501 hasConceptScore W2042727501C149635348 @default.
- W2042727501 hasConceptScore W2042727501C159985019 @default.
- W2042727501 hasConceptScore W2042727501C162324750 @default.
- W2042727501 hasConceptScore W2042727501C173608175 @default.
- W2042727501 hasConceptScore W2042727501C187736073 @default.
- W2042727501 hasConceptScore W2042727501C192562407 @default.