Matches in SemOpenAlex for { <https://semopenalex.org/work/W2042797777> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2042797777 endingPage "258" @default.
- W2042797777 startingPage "227" @default.
- W2042797777 abstract "We study numerical methods for a one-dimensional reflection inverse problem. A normally incident impulsive plane wave is sent into a stratified elastic half-space from an adjoining homogeneous elastic half-space, and the reflected wave (the reflectance) is measured. The characteristic impedance of the medium is to be recovered as a function of travel time. This inverse problem occurs in several applications, including reflection seismology and determining vocal tract shape for speech synthesis. We show that if the step reflectance or ramp reflectance (the first or second time integral of the reflectance) is sampled appropriately and the problem is discretized accordingly, then the solution of the discrete inverse problem converges uniformly to the impedance profile, and the convergence is second order in the mesh width. The proofs involve analyzing a discretization of an integral equation obtained by Burridge which is a variant of the Marchenko equation. The discrete inverse problem can be solved by integral equation methods or downward continuation methods. For these results, we assume that the medium is piecewise smooth with discontinuities occurring only at integer multiples of the mesh width $Delta $. If the discontinuities occur at noninteger multiples of the mesh width $Delta $, convergence need not be uniform, and convergence in the $L^p $ norms for $1 leqq p < infty $ need be no better than $O(Delta ^{{1 / p}} )$. For smooth impedance profiles, we also prove that convergence can be obtained from the response to some nonimpulsive sources, including some $C^infty $ sources with mean zero; to obtain convergence, the source must become more concentrated as $Delta to 0$." @default.
- W2042797777 created "2016-06-24" @default.
- W2042797777 creator A5063596098 @default.
- W2042797777 date "1986-04-01" @default.
- W2042797777 modified "2023-10-14" @default.
- W2042797777 title "Numerical Methods for Reflection Inverse Problems: Convergence and Nonimpulsive Sources" @default.
- W2042797777 cites W1975263668 @default.
- W2042797777 cites W1983383712 @default.
- W2042797777 cites W2006575901 @default.
- W2042797777 cites W2023842909 @default.
- W2042797777 cites W2034257104 @default.
- W2042797777 cites W2035288196 @default.
- W2042797777 cites W2040270725 @default.
- W2042797777 cites W2046371037 @default.
- W2042797777 cites W2052232097 @default.
- W2042797777 cites W2057832608 @default.
- W2042797777 cites W2069637414 @default.
- W2042797777 cites W2078150688 @default.
- W2042797777 cites W2093377409 @default.
- W2042797777 cites W2096251172 @default.
- W2042797777 cites W2133315008 @default.
- W2042797777 cites W2139685830 @default.
- W2042797777 cites W2166223671 @default.
- W2042797777 doi "https://doi.org/10.1137/0723017" @default.
- W2042797777 hasPublicationYear "1986" @default.
- W2042797777 type Work @default.
- W2042797777 sameAs 2042797777 @default.
- W2042797777 citedByCount "4" @default.
- W2042797777 crossrefType "journal-article" @default.
- W2042797777 hasAuthorship W2042797777A5063596098 @default.
- W2042797777 hasConcept C134306372 @default.
- W2042797777 hasConcept C135252773 @default.
- W2042797777 hasConcept C15627037 @default.
- W2042797777 hasConcept C162324750 @default.
- W2042797777 hasConcept C164660894 @default.
- W2042797777 hasConcept C199360897 @default.
- W2042797777 hasConcept C207467116 @default.
- W2042797777 hasConcept C2524010 @default.
- W2042797777 hasConcept C27016315 @default.
- W2042797777 hasConcept C2777303404 @default.
- W2042797777 hasConcept C33923547 @default.
- W2042797777 hasConcept C41008148 @default.
- W2042797777 hasConcept C50522688 @default.
- W2042797777 hasConcept C65682993 @default.
- W2042797777 hasConcept C73000952 @default.
- W2042797777 hasConceptScore W2042797777C134306372 @default.
- W2042797777 hasConceptScore W2042797777C135252773 @default.
- W2042797777 hasConceptScore W2042797777C15627037 @default.
- W2042797777 hasConceptScore W2042797777C162324750 @default.
- W2042797777 hasConceptScore W2042797777C164660894 @default.
- W2042797777 hasConceptScore W2042797777C199360897 @default.
- W2042797777 hasConceptScore W2042797777C207467116 @default.
- W2042797777 hasConceptScore W2042797777C2524010 @default.
- W2042797777 hasConceptScore W2042797777C27016315 @default.
- W2042797777 hasConceptScore W2042797777C2777303404 @default.
- W2042797777 hasConceptScore W2042797777C33923547 @default.
- W2042797777 hasConceptScore W2042797777C41008148 @default.
- W2042797777 hasConceptScore W2042797777C50522688 @default.
- W2042797777 hasConceptScore W2042797777C65682993 @default.
- W2042797777 hasConceptScore W2042797777C73000952 @default.
- W2042797777 hasIssue "2" @default.
- W2042797777 hasLocation W20427977771 @default.
- W2042797777 hasOpenAccess W2042797777 @default.
- W2042797777 hasPrimaryLocation W20427977771 @default.
- W2042797777 hasRelatedWork W1506284452 @default.
- W2042797777 hasRelatedWork W1671519656 @default.
- W2042797777 hasRelatedWork W2000496108 @default.
- W2042797777 hasRelatedWork W2044239306 @default.
- W2042797777 hasRelatedWork W2046313492 @default.
- W2042797777 hasRelatedWork W2051067641 @default.
- W2042797777 hasRelatedWork W2298446516 @default.
- W2042797777 hasRelatedWork W2406260863 @default.
- W2042797777 hasRelatedWork W4313525042 @default.
- W2042797777 hasRelatedWork W837759118 @default.
- W2042797777 hasVolume "23" @default.
- W2042797777 isParatext "false" @default.
- W2042797777 isRetracted "false" @default.
- W2042797777 magId "2042797777" @default.
- W2042797777 workType "article" @default.