Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043166323> ?p ?o ?g. }
- W2043166323 endingPage "218" @default.
- W2043166323 startingPage "208" @default.
- W2043166323 abstract "In this paper we adopt a geometric perspective to highlight the challenges associated with solving high-dimensional reliability problems. Adopting a geometric point of view we highlight and explain a range of results concerning the performance of several well-known reliability methods. We start by investigating geometric properties of the N-dimensional Gaussian space and the distribution of samples in such a space or in a subspace corresponding to a failure domain. Next, we discuss Importance Sampling (IS) in high dimensions. We provide a geometric understanding as to why IS generally does not work in high dimensions [Au SK, Beck JL. Importance sampling in high dimensions. Structural Safety 2003;25(2):139–63]. We furthermore challenge the significance of “design point” when dealing with strongly nonlinear problems. We conclude by showing that for the general high-dimensional nonlinear reliability problems the selection of an appropriate fixed IS density is practically impossible. Next, we discuss the simulation of samples using Markov Chain Monte Carlo (MCMC) methods. Firstly, we provide a geometric explanation as to why the standard Metropolis–Hastings (MH) algorithm does “not work” in high-dimensions. We then explain why the modified Metropolis–Hastings (MMH) algorithm introduced by Au and Beck [Au SK, Beck JL. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics 2001;16(4):263–77] overcomes this problem. A study of the correlation of samples obtained using MMH as a function of different parameters follows. Such study leads to recommendations for fine-tuning the MMH algorithm. Finally, the MMH algorithm is compared with the MCMC algorithm proposed by Katafygiotis and Cheung [Katafygiotis LS, Cheung SH. Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study, Structural Safety 2006 (in print)] in terms of the correlation of samples they generate." @default.
- W2043166323 created "2016-06-24" @default.
- W2043166323 creator A5041581034 @default.
- W2043166323 creator A5073634142 @default.
- W2043166323 date "2008-04-01" @default.
- W2043166323 modified "2023-10-18" @default.
- W2043166323 title "Geometric insight into the challenges of solving high-dimensional reliability problems" @default.
- W2043166323 cites W1980587057 @default.
- W2043166323 cites W1982878323 @default.
- W2043166323 cites W1999091229 @default.
- W2043166323 cites W2092949079 @default.
- W2043166323 cites W2290195878 @default.
- W2043166323 doi "https://doi.org/10.1016/j.probengmech.2007.12.026" @default.
- W2043166323 hasPublicationYear "2008" @default.
- W2043166323 type Work @default.
- W2043166323 sameAs 2043166323 @default.
- W2043166323 citedByCount "138" @default.
- W2043166323 countsByYear W20431663232012 @default.
- W2043166323 countsByYear W20431663232013 @default.
- W2043166323 countsByYear W20431663232014 @default.
- W2043166323 countsByYear W20431663232015 @default.
- W2043166323 countsByYear W20431663232016 @default.
- W2043166323 countsByYear W20431663232017 @default.
- W2043166323 countsByYear W20431663232018 @default.
- W2043166323 countsByYear W20431663232019 @default.
- W2043166323 countsByYear W20431663232020 @default.
- W2043166323 countsByYear W20431663232021 @default.
- W2043166323 countsByYear W20431663232022 @default.
- W2043166323 countsByYear W20431663232023 @default.
- W2043166323 crossrefType "journal-article" @default.
- W2043166323 hasAuthorship W2043166323A5041581034 @default.
- W2043166323 hasAuthorship W2043166323A5073634142 @default.
- W2043166323 hasConcept C105795698 @default.
- W2043166323 hasConcept C106131492 @default.
- W2043166323 hasConcept C111350023 @default.
- W2043166323 hasConcept C11413529 @default.
- W2043166323 hasConcept C119857082 @default.
- W2043166323 hasConcept C121332964 @default.
- W2043166323 hasConcept C126255220 @default.
- W2043166323 hasConcept C140779682 @default.
- W2043166323 hasConcept C158622935 @default.
- W2043166323 hasConcept C163258240 @default.
- W2043166323 hasConcept C163716315 @default.
- W2043166323 hasConcept C19499675 @default.
- W2043166323 hasConcept C204693719 @default.
- W2043166323 hasConcept C2524010 @default.
- W2043166323 hasConcept C28719098 @default.
- W2043166323 hasConcept C28826006 @default.
- W2043166323 hasConcept C31972630 @default.
- W2043166323 hasConcept C33923547 @default.
- W2043166323 hasConcept C41008148 @default.
- W2043166323 hasConcept C43214815 @default.
- W2043166323 hasConcept C49937458 @default.
- W2043166323 hasConcept C52740198 @default.
- W2043166323 hasConcept C62520636 @default.
- W2043166323 hasConcept C98763669 @default.
- W2043166323 hasConceptScore W2043166323C105795698 @default.
- W2043166323 hasConceptScore W2043166323C106131492 @default.
- W2043166323 hasConceptScore W2043166323C111350023 @default.
- W2043166323 hasConceptScore W2043166323C11413529 @default.
- W2043166323 hasConceptScore W2043166323C119857082 @default.
- W2043166323 hasConceptScore W2043166323C121332964 @default.
- W2043166323 hasConceptScore W2043166323C126255220 @default.
- W2043166323 hasConceptScore W2043166323C140779682 @default.
- W2043166323 hasConceptScore W2043166323C158622935 @default.
- W2043166323 hasConceptScore W2043166323C163258240 @default.
- W2043166323 hasConceptScore W2043166323C163716315 @default.
- W2043166323 hasConceptScore W2043166323C19499675 @default.
- W2043166323 hasConceptScore W2043166323C204693719 @default.
- W2043166323 hasConceptScore W2043166323C2524010 @default.
- W2043166323 hasConceptScore W2043166323C28719098 @default.
- W2043166323 hasConceptScore W2043166323C28826006 @default.
- W2043166323 hasConceptScore W2043166323C31972630 @default.
- W2043166323 hasConceptScore W2043166323C33923547 @default.
- W2043166323 hasConceptScore W2043166323C41008148 @default.
- W2043166323 hasConceptScore W2043166323C43214815 @default.
- W2043166323 hasConceptScore W2043166323C49937458 @default.
- W2043166323 hasConceptScore W2043166323C52740198 @default.
- W2043166323 hasConceptScore W2043166323C62520636 @default.
- W2043166323 hasConceptScore W2043166323C98763669 @default.
- W2043166323 hasIssue "2-3" @default.
- W2043166323 hasLocation W20431663231 @default.
- W2043166323 hasOpenAccess W2043166323 @default.
- W2043166323 hasPrimaryLocation W20431663231 @default.
- W2043166323 hasRelatedWork W1482570420 @default.
- W2043166323 hasRelatedWork W1593554773 @default.
- W2043166323 hasRelatedWork W1965870577 @default.
- W2043166323 hasRelatedWork W1979416967 @default.
- W2043166323 hasRelatedWork W1989857568 @default.
- W2043166323 hasRelatedWork W2031427063 @default.
- W2043166323 hasRelatedWork W2033057584 @default.
- W2043166323 hasRelatedWork W2036896164 @default.
- W2043166323 hasRelatedWork W2281364703 @default.
- W2043166323 hasRelatedWork W2940690269 @default.
- W2043166323 hasVolume "23" @default.
- W2043166323 isParatext "false" @default.
- W2043166323 isRetracted "false" @default.
- W2043166323 magId "2043166323" @default.