Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043180450> ?p ?o ?g. }
- W2043180450 endingPage "66" @default.
- W2043180450 startingPage "47" @default.
- W2043180450 abstract "Ordinary least squares linear regression models are frequently used to analyze and model spatial phenomena. These models are useful and easily interpreted, and the assumptions, strengths, and weaknesses of these models are well studied and understood. Regression models applied to spatial data frequently contain spatially autocorrelated residuals, however, indicating a misspecification error. This problem is limited to spatial data (although similar problems occur with time series data), so it has received less attention than more frequently encountered problems. A method called spatial filtering with eigenvectors has been proposed to account for this problem. We apply this method to ten real-world data sets and a series of simulated data sets to begin to understand the conditions under which the method can be most usefully applied. We find that spatial filtering with eigenvectors reduces spatial misspecification errors, increases the strength of the model fit, frequently increases the normality of model residuals, and can increase the homoscedasticity of model residuals. We provide a sample script showing how to apply the method in the R statistical environment. Spatial filtering with eigenvectors is a powerful geographic method that should be applied to many regression models that use geographic data." @default.
- W2043180450 created "2016-06-24" @default.
- W2043180450 creator A5039559103 @default.
- W2043180450 creator A5062261197 @default.
- W2043180450 date "2013-01-01" @default.
- W2043180450 modified "2023-09-27" @default.
- W2043180450 title "Accounting for Spatial Autocorrelation in Linear Regression Models Using Spatial Filtering with Eigenvectors" @default.
- W2043180450 cites W110918106 @default.
- W2043180450 cites W1495611242 @default.
- W2043180450 cites W1766029576 @default.
- W2043180450 cites W182057453 @default.
- W2043180450 cites W1963831906 @default.
- W2043180450 cites W1964449090 @default.
- W2043180450 cites W1972343369 @default.
- W2043180450 cites W1976553079 @default.
- W2043180450 cites W2003315067 @default.
- W2043180450 cites W2018727665 @default.
- W2043180450 cites W2027980327 @default.
- W2043180450 cites W2028226037 @default.
- W2043180450 cites W2041900796 @default.
- W2043180450 cites W2042265880 @default.
- W2043180450 cites W2046714450 @default.
- W2043180450 cites W2052611179 @default.
- W2043180450 cites W2053902250 @default.
- W2043180450 cites W2060091647 @default.
- W2043180450 cites W2063105147 @default.
- W2043180450 cites W2067064799 @default.
- W2043180450 cites W2073560830 @default.
- W2043180450 cites W2074579567 @default.
- W2043180450 cites W2078783610 @default.
- W2043180450 cites W2091308143 @default.
- W2043180450 cites W2097137621 @default.
- W2043180450 cites W2105433365 @default.
- W2043180450 cites W2110394927 @default.
- W2043180450 cites W2125391033 @default.
- W2043180450 cites W2127258296 @default.
- W2043180450 cites W2131316266 @default.
- W2043180450 cites W2158378675 @default.
- W2043180450 cites W2159298310 @default.
- W2043180450 cites W2160061095 @default.
- W2043180450 cites W2162787044 @default.
- W2043180450 cites W2170565777 @default.
- W2043180450 cites W2964609338 @default.
- W2043180450 cites W3122836240 @default.
- W2043180450 cites W3125452490 @default.
- W2043180450 cites W3125659462 @default.
- W2043180450 cites W4230811475 @default.
- W2043180450 cites W4243455742 @default.
- W2043180450 cites W4251317402 @default.
- W2043180450 doi "https://doi.org/10.1080/00045608.2012.685048" @default.
- W2043180450 hasPublicationYear "2013" @default.
- W2043180450 type Work @default.
- W2043180450 sameAs 2043180450 @default.
- W2043180450 citedByCount "75" @default.
- W2043180450 countsByYear W20431804502013 @default.
- W2043180450 countsByYear W20431804502014 @default.
- W2043180450 countsByYear W20431804502015 @default.
- W2043180450 countsByYear W20431804502016 @default.
- W2043180450 countsByYear W20431804502017 @default.
- W2043180450 countsByYear W20431804502018 @default.
- W2043180450 countsByYear W20431804502019 @default.
- W2043180450 countsByYear W20431804502020 @default.
- W2043180450 countsByYear W20431804502021 @default.
- W2043180450 countsByYear W20431804502022 @default.
- W2043180450 countsByYear W20431804502023 @default.
- W2043180450 crossrefType "journal-article" @default.
- W2043180450 hasAuthorship W2043180450A5039559103 @default.
- W2043180450 hasAuthorship W2043180450A5062261197 @default.
- W2043180450 hasConcept C101104100 @default.
- W2043180450 hasConcept C104409967 @default.
- W2043180450 hasConcept C105795698 @default.
- W2043180450 hasConcept C124101348 @default.
- W2043180450 hasConcept C143724316 @default.
- W2043180450 hasConcept C149782125 @default.
- W2043180450 hasConcept C151730666 @default.
- W2043180450 hasConcept C152877465 @default.
- W2043180450 hasConcept C159620131 @default.
- W2043180450 hasConcept C33923547 @default.
- W2043180450 hasConcept C41008148 @default.
- W2043180450 hasConcept C48921125 @default.
- W2043180450 hasConcept C5297727 @default.
- W2043180450 hasConcept C83546350 @default.
- W2043180450 hasConcept C86803240 @default.
- W2043180450 hasConcept C99656134 @default.
- W2043180450 hasConceptScore W2043180450C101104100 @default.
- W2043180450 hasConceptScore W2043180450C104409967 @default.
- W2043180450 hasConceptScore W2043180450C105795698 @default.
- W2043180450 hasConceptScore W2043180450C124101348 @default.
- W2043180450 hasConceptScore W2043180450C143724316 @default.
- W2043180450 hasConceptScore W2043180450C149782125 @default.
- W2043180450 hasConceptScore W2043180450C151730666 @default.
- W2043180450 hasConceptScore W2043180450C152877465 @default.
- W2043180450 hasConceptScore W2043180450C159620131 @default.
- W2043180450 hasConceptScore W2043180450C33923547 @default.
- W2043180450 hasConceptScore W2043180450C41008148 @default.
- W2043180450 hasConceptScore W2043180450C48921125 @default.
- W2043180450 hasConceptScore W2043180450C5297727 @default.
- W2043180450 hasConceptScore W2043180450C83546350 @default.