Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043228434> ?p ?o ?g. }
- W2043228434 endingPage "106" @default.
- W2043228434 startingPage "94" @default.
- W2043228434 abstract "This paper presents a novel technique for estimating normals on unorganized point clouds. Methods from robust statistics are used to detect the best local tangent plane for each point. Therefore the algorithm is capable to deal with points located in high curvature regions or near/on complex sharp features, while being highly robust with respect to noise and outliers. In particular, the presented method reliably recovers sharp features but does not require tedious manual parameter tuning as done by current methods. The key ingredients of our approach are a robust noise-scale estimator and a kernel density estimation (KDE) based objective function. In contrast to previous approaches the noise-scale estimation is not affected by sharp features and achieves high accuracy even in the presence of outliers. In addition, our normal estimation procedure allows detection and elimination of outliers. We confirm the validity and reliability of our approach on synthetic and measured data and demonstrate applications to point cloud denoising." @default.
- W2043228434 created "2016-06-24" @default.
- W2043228434 creator A5014239595 @default.
- W2043228434 creator A5018729096 @default.
- W2043228434 creator A5032374520 @default.
- W2043228434 creator A5037976392 @default.
- W2043228434 creator A5051338993 @default.
- W2043228434 creator A5083282241 @default.
- W2043228434 date "2010-04-01" @default.
- W2043228434 modified "2023-10-17" @default.
- W2043228434 title "Robust normal estimation for point clouds with sharp features" @default.
- W2043228434 cites W1526121309 @default.
- W2043228434 cites W1537603411 @default.
- W2043228434 cites W1546689726 @default.
- W2043228434 cites W1988317275 @default.
- W2043228434 cites W2000018820 @default.
- W2043228434 cites W2001424961 @default.
- W2043228434 cites W2004402003 @default.
- W2043228434 cites W2009086487 @default.
- W2043228434 cites W2012525677 @default.
- W2043228434 cites W2015399478 @default.
- W2043228434 cites W2019032869 @default.
- W2043228434 cites W2036364699 @default.
- W2043228434 cites W2047231387 @default.
- W2043228434 cites W2052202553 @default.
- W2043228434 cites W2052524623 @default.
- W2043228434 cites W2058524213 @default.
- W2043228434 cites W2084595284 @default.
- W2043228434 cites W2106815954 @default.
- W2043228434 cites W2109131365 @default.
- W2043228434 cites W2113634802 @default.
- W2043228434 cites W2122212542 @default.
- W2043228434 cites W2125239138 @default.
- W2043228434 cites W2143516773 @default.
- W2043228434 cites W2149887512 @default.
- W2043228434 cites W2157950344 @default.
- W2043228434 cites W2165801966 @default.
- W2043228434 cites W2199460564 @default.
- W2043228434 cites W2293372129 @default.
- W2043228434 cites W2620567072 @default.
- W2043228434 cites W2998100778 @default.
- W2043228434 cites W2998115525 @default.
- W2043228434 cites W2998590421 @default.
- W2043228434 cites W3137369665 @default.
- W2043228434 cites W3137466219 @default.
- W2043228434 cites W4214886506 @default.
- W2043228434 cites W4242723867 @default.
- W2043228434 cites W4249850741 @default.
- W2043228434 doi "https://doi.org/10.1016/j.cag.2010.01.004" @default.
- W2043228434 hasPublicationYear "2010" @default.
- W2043228434 type Work @default.
- W2043228434 sameAs 2043228434 @default.
- W2043228434 citedByCount "97" @default.
- W2043228434 countsByYear W20432284342012 @default.
- W2043228434 countsByYear W20432284342013 @default.
- W2043228434 countsByYear W20432284342014 @default.
- W2043228434 countsByYear W20432284342015 @default.
- W2043228434 countsByYear W20432284342016 @default.
- W2043228434 countsByYear W20432284342017 @default.
- W2043228434 countsByYear W20432284342018 @default.
- W2043228434 countsByYear W20432284342019 @default.
- W2043228434 countsByYear W20432284342020 @default.
- W2043228434 countsByYear W20432284342021 @default.
- W2043228434 countsByYear W20432284342022 @default.
- W2043228434 countsByYear W20432284342023 @default.
- W2043228434 crossrefType "journal-article" @default.
- W2043228434 hasAuthorship W2043228434A5014239595 @default.
- W2043228434 hasAuthorship W2043228434A5018729096 @default.
- W2043228434 hasAuthorship W2043228434A5032374520 @default.
- W2043228434 hasAuthorship W2043228434A5037976392 @default.
- W2043228434 hasAuthorship W2043228434A5051338993 @default.
- W2043228434 hasAuthorship W2043228434A5083282241 @default.
- W2043228434 hasConcept C105795698 @default.
- W2043228434 hasConcept C11413529 @default.
- W2043228434 hasConcept C114614502 @default.
- W2043228434 hasConcept C115961682 @default.
- W2043228434 hasConcept C131979681 @default.
- W2043228434 hasConcept C153180895 @default.
- W2043228434 hasConcept C154945302 @default.
- W2043228434 hasConcept C185429906 @default.
- W2043228434 hasConcept C195065555 @default.
- W2043228434 hasConcept C2524010 @default.
- W2043228434 hasConcept C33923547 @default.
- W2043228434 hasConcept C41008148 @default.
- W2043228434 hasConcept C67226441 @default.
- W2043228434 hasConcept C71134354 @default.
- W2043228434 hasConcept C74193536 @default.
- W2043228434 hasConcept C79337645 @default.
- W2043228434 hasConcept C99498987 @default.
- W2043228434 hasConceptScore W2043228434C105795698 @default.
- W2043228434 hasConceptScore W2043228434C11413529 @default.
- W2043228434 hasConceptScore W2043228434C114614502 @default.
- W2043228434 hasConceptScore W2043228434C115961682 @default.
- W2043228434 hasConceptScore W2043228434C131979681 @default.
- W2043228434 hasConceptScore W2043228434C153180895 @default.
- W2043228434 hasConceptScore W2043228434C154945302 @default.
- W2043228434 hasConceptScore W2043228434C185429906 @default.
- W2043228434 hasConceptScore W2043228434C195065555 @default.