Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043286600> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2043286600 endingPage "208" @default.
- W2043286600 startingPage "203" @default.
- W2043286600 abstract "This paper considers a Bayesian approach to linear system identification. One motivation is the advantage of the minimum mean square error of the associated conditional mean estimate. A further motivation is the error quantifications afforded by the posterior density which are not reliant on asymptotic in data length derivations. To compute these posterior quantities, this paper derives and illustrates a Gibbs sampling approach, which is a randomized algorithm in the family of Markov chain Monte Carlo methods. We provide details on a numerically robust implementation of the Gibbs sampler. In a numerical example, the proposed method is illustrated to give good convergence properties without requiring any user tuning." @default.
- W2043286600 created "2016-06-24" @default.
- W2043286600 creator A5017673165 @default.
- W2043286600 creator A5045048407 @default.
- W2043286600 creator A5050571002 @default.
- W2043286600 creator A5083090794 @default.
- W2043286600 date "2012-07-01" @default.
- W2043286600 modified "2023-10-18" @default.
- W2043286600 title "Estimation of Linear Systems using a Gibbs Sampler" @default.
- W2043286600 cites W2011691068 @default.
- W2043286600 cites W2020999234 @default.
- W2043286600 cites W2056760934 @default.
- W2043286600 cites W2058030217 @default.
- W2043286600 cites W2083875149 @default.
- W2043286600 cites W2121448470 @default.
- W2043286600 cites W2138309709 @default.
- W2043286600 doi "https://doi.org/10.3182/20120711-3-be-2027.00297" @default.
- W2043286600 hasPublicationYear "2012" @default.
- W2043286600 type Work @default.
- W2043286600 sameAs 2043286600 @default.
- W2043286600 citedByCount "30" @default.
- W2043286600 countsByYear W20432866002013 @default.
- W2043286600 countsByYear W20432866002015 @default.
- W2043286600 countsByYear W20432866002016 @default.
- W2043286600 countsByYear W20432866002017 @default.
- W2043286600 countsByYear W20432866002018 @default.
- W2043286600 countsByYear W20432866002019 @default.
- W2043286600 countsByYear W20432866002020 @default.
- W2043286600 countsByYear W20432866002021 @default.
- W2043286600 countsByYear W20432866002022 @default.
- W2043286600 crossrefType "journal-article" @default.
- W2043286600 hasAuthorship W2043286600A5017673165 @default.
- W2043286600 hasAuthorship W2043286600A5045048407 @default.
- W2043286600 hasAuthorship W2043286600A5050571002 @default.
- W2043286600 hasAuthorship W2043286600A5083090794 @default.
- W2043286600 hasConcept C105795698 @default.
- W2043286600 hasConcept C106131492 @default.
- W2043286600 hasConcept C107673813 @default.
- W2043286600 hasConcept C111350023 @default.
- W2043286600 hasConcept C119247159 @default.
- W2043286600 hasConcept C124101348 @default.
- W2043286600 hasConcept C126255220 @default.
- W2043286600 hasConcept C140779682 @default.
- W2043286600 hasConcept C158424031 @default.
- W2043286600 hasConcept C162324750 @default.
- W2043286600 hasConcept C185429906 @default.
- W2043286600 hasConcept C19499675 @default.
- W2043286600 hasConcept C2777303404 @default.
- W2043286600 hasConcept C2780009758 @default.
- W2043286600 hasConcept C28826006 @default.
- W2043286600 hasConcept C31972630 @default.
- W2043286600 hasConcept C33923547 @default.
- W2043286600 hasConcept C41008148 @default.
- W2043286600 hasConcept C50522688 @default.
- W2043286600 hasConcept C90652560 @default.
- W2043286600 hasConcept C98763669 @default.
- W2043286600 hasConceptScore W2043286600C105795698 @default.
- W2043286600 hasConceptScore W2043286600C106131492 @default.
- W2043286600 hasConceptScore W2043286600C107673813 @default.
- W2043286600 hasConceptScore W2043286600C111350023 @default.
- W2043286600 hasConceptScore W2043286600C119247159 @default.
- W2043286600 hasConceptScore W2043286600C124101348 @default.
- W2043286600 hasConceptScore W2043286600C126255220 @default.
- W2043286600 hasConceptScore W2043286600C140779682 @default.
- W2043286600 hasConceptScore W2043286600C158424031 @default.
- W2043286600 hasConceptScore W2043286600C162324750 @default.
- W2043286600 hasConceptScore W2043286600C185429906 @default.
- W2043286600 hasConceptScore W2043286600C19499675 @default.
- W2043286600 hasConceptScore W2043286600C2777303404 @default.
- W2043286600 hasConceptScore W2043286600C2780009758 @default.
- W2043286600 hasConceptScore W2043286600C28826006 @default.
- W2043286600 hasConceptScore W2043286600C31972630 @default.
- W2043286600 hasConceptScore W2043286600C33923547 @default.
- W2043286600 hasConceptScore W2043286600C41008148 @default.
- W2043286600 hasConceptScore W2043286600C50522688 @default.
- W2043286600 hasConceptScore W2043286600C90652560 @default.
- W2043286600 hasConceptScore W2043286600C98763669 @default.
- W2043286600 hasIssue "16" @default.
- W2043286600 hasLocation W20432866001 @default.
- W2043286600 hasOpenAccess W2043286600 @default.
- W2043286600 hasPrimaryLocation W20432866001 @default.
- W2043286600 hasRelatedWork W1593554773 @default.
- W2043286600 hasRelatedWork W1597455262 @default.
- W2043286600 hasRelatedWork W2066716418 @default.
- W2043286600 hasRelatedWork W2160733013 @default.
- W2043286600 hasRelatedWork W2278756455 @default.
- W2043286600 hasRelatedWork W2378517017 @default.
- W2043286600 hasRelatedWork W241360418 @default.
- W2043286600 hasRelatedWork W2949816416 @default.
- W2043286600 hasRelatedWork W4244765122 @default.
- W2043286600 hasRelatedWork W4288261522 @default.
- W2043286600 hasVolume "45" @default.
- W2043286600 isParatext "false" @default.
- W2043286600 isRetracted "false" @default.
- W2043286600 magId "2043286600" @default.
- W2043286600 workType "article" @default.