Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043322854> ?p ?o ?g. }
- W2043322854 endingPage "8859" @default.
- W2043322854 startingPage "8843" @default.
- W2043322854 abstract "We have studied in detail the physical phenomena involved in the interaction of high-powered nanosecond excimer-laser pulses with bulk targets resulting in evaporation, plasma formation, and subsequent deposition of thin films. A theoretical model for simulating these laser-plasma--solid interactions has been developed. In this model, the laser-generated plasma is treated as an ideal gas at high pressure and temperature, which is initially confined in small dimensions, and is suddenly allowed to expand in vacuum. The three-dimensional expansion of this plasma gives rise to the characteristic spatial thickness and compositional variations observed in laser-deposited thin films of multicomponent systems. The forward-directed nature of the laser evaporation process has been found to result from anisotropic expansion velocities of the atomic species which are controlled by the dimensions of the expanding plasma.Based on the nature of interaction of the laser beam with the target and the evaporated material, the pulsed-laser evaporation (PLE) process can be classified into three separate regimes: (i) interaction of the laser beam with the bulk target, (ii) plasma formation, heating, and initial three-dimensional isothermal expansion, and (iii) adiabatic expansion and deposition of thin films. The first two processes occur during the time interval of the laser pulse, while the last process initiates after the laser pulse terminates. Under PLE conditions, the evaporation of the target is assumed to be thermal in nature, while the plasma expansion dynamics is nonthermal as a result of interaction of the laser beam with the evaporated material. The equations of compressible gas dynamics are set up to simulate the expansion of the plasma in the last two regimes. The solution of the gas-dynamics equations shows that the expansion velocities of the plasma are related to its initial dimensions and temperature, and the atomic weight of the species. Detailed simulations analyzing the salient features of the laser-deposition process have been carried out. The effects of various beam and substrate parameters including pulse energy density, substrate-target distance, irradiated spot size, and atomic mass of the species have been theoretically analyzed. This model predicts most of the characteristic experimental features of the laser evaporation and deposition of thin films. These characteristic features include (a) the effect of pulse energy density on atomic velocities, (b) the forward-directed nature of the deposit and its dependence on energy density, (c) spatial compositional variations in multicomponent thin films as a function of energy density, (d) dependence of the atomic velocities with atomic weights of various species in multicomponent films, (e) athermal non-Maxwellian-type velocity distribution of the atomic and molecular species, and (f) thickness and compositional variations as a function of substrate-target distance and irradiated spot size." @default.
- W2043322854 created "2016-06-24" @default.
- W2043322854 creator A5010567856 @default.
- W2043322854 creator A5031116392 @default.
- W2043322854 date "1990-05-01" @default.
- W2043322854 modified "2023-10-17" @default.
- W2043322854 title "Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model" @default.
- W2043322854 cites W1575332366 @default.
- W2043322854 cites W1965846404 @default.
- W2043322854 cites W1970922993 @default.
- W2043322854 cites W1973753074 @default.
- W2043322854 cites W1976818861 @default.
- W2043322854 cites W1985149257 @default.
- W2043322854 cites W1988521587 @default.
- W2043322854 cites W1989640664 @default.
- W2043322854 cites W1990610979 @default.
- W2043322854 cites W1991855924 @default.
- W2043322854 cites W1995542957 @default.
- W2043322854 cites W2000887743 @default.
- W2043322854 cites W2013028068 @default.
- W2043322854 cites W2016623475 @default.
- W2043322854 cites W2020318405 @default.
- W2043322854 cites W2022811963 @default.
- W2043322854 cites W2026897540 @default.
- W2043322854 cites W2029019316 @default.
- W2043322854 cites W2032200334 @default.
- W2043322854 cites W2039260184 @default.
- W2043322854 cites W2052808379 @default.
- W2043322854 cites W2054838049 @default.
- W2043322854 cites W2055098173 @default.
- W2043322854 cites W2058063437 @default.
- W2043322854 cites W2061260520 @default.
- W2043322854 cites W2063696425 @default.
- W2043322854 cites W2075879123 @default.
- W2043322854 cites W2081379335 @default.
- W2043322854 cites W2082719912 @default.
- W2043322854 cites W2087858939 @default.
- W2043322854 cites W2094716573 @default.
- W2043322854 cites W2159914269 @default.
- W2043322854 cites W2256778743 @default.
- W2043322854 doi "https://doi.org/10.1103/physrevb.41.8843" @default.
- W2043322854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9993223" @default.
- W2043322854 hasPublicationYear "1990" @default.
- W2043322854 type Work @default.
- W2043322854 sameAs 2043322854 @default.
- W2043322854 citedByCount "884" @default.
- W2043322854 countsByYear W20433228542012 @default.
- W2043322854 countsByYear W20433228542013 @default.
- W2043322854 countsByYear W20433228542014 @default.
- W2043322854 countsByYear W20433228542015 @default.
- W2043322854 countsByYear W20433228542016 @default.
- W2043322854 countsByYear W20433228542017 @default.
- W2043322854 countsByYear W20433228542018 @default.
- W2043322854 countsByYear W20433228542019 @default.
- W2043322854 countsByYear W20433228542020 @default.
- W2043322854 countsByYear W20433228542021 @default.
- W2043322854 countsByYear W20433228542022 @default.
- W2043322854 countsByYear W20433228542023 @default.
- W2043322854 crossrefType "journal-article" @default.
- W2043322854 hasAuthorship W2043322854A5010567856 @default.
- W2043322854 hasAuthorship W2043322854A5031116392 @default.
- W2043322854 hasConcept C109663097 @default.
- W2043322854 hasConcept C120665830 @default.
- W2043322854 hasConcept C121332964 @default.
- W2043322854 hasConcept C151730666 @default.
- W2043322854 hasConcept C171250308 @default.
- W2043322854 hasConcept C184779094 @default.
- W2043322854 hasConcept C19067145 @default.
- W2043322854 hasConcept C192562407 @default.
- W2043322854 hasConcept C195801359 @default.
- W2043322854 hasConcept C2816523 @default.
- W2043322854 hasConcept C37982897 @default.
- W2043322854 hasConcept C520434653 @default.
- W2043322854 hasConcept C61441594 @default.
- W2043322854 hasConcept C62520636 @default.
- W2043322854 hasConcept C64297162 @default.
- W2043322854 hasConcept C82706917 @default.
- W2043322854 hasConcept C86803240 @default.
- W2043322854 hasConcept C97355855 @default.
- W2043322854 hasConceptScore W2043322854C109663097 @default.
- W2043322854 hasConceptScore W2043322854C120665830 @default.
- W2043322854 hasConceptScore W2043322854C121332964 @default.
- W2043322854 hasConceptScore W2043322854C151730666 @default.
- W2043322854 hasConceptScore W2043322854C171250308 @default.
- W2043322854 hasConceptScore W2043322854C184779094 @default.
- W2043322854 hasConceptScore W2043322854C19067145 @default.
- W2043322854 hasConceptScore W2043322854C192562407 @default.
- W2043322854 hasConceptScore W2043322854C195801359 @default.
- W2043322854 hasConceptScore W2043322854C2816523 @default.
- W2043322854 hasConceptScore W2043322854C37982897 @default.
- W2043322854 hasConceptScore W2043322854C520434653 @default.
- W2043322854 hasConceptScore W2043322854C61441594 @default.
- W2043322854 hasConceptScore W2043322854C62520636 @default.
- W2043322854 hasConceptScore W2043322854C64297162 @default.
- W2043322854 hasConceptScore W2043322854C82706917 @default.
- W2043322854 hasConceptScore W2043322854C86803240 @default.
- W2043322854 hasConceptScore W2043322854C97355855 @default.
- W2043322854 hasIssue "13" @default.