Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043502923> ?p ?o ?g. }
- W2043502923 endingPage "574" @default.
- W2043502923 startingPage "562" @default.
- W2043502923 abstract "This paper presents an activity sequence-based indoor pedestrian localization approach using smartphones. The activity sequence consists of several continuous activities during the walking process, such as turning at a corner, taking the elevator, taking the escalator, and walking stairs. These activities take place when a user walks at some special points in the building, like corners, elevators, escalators, and stairs. The special points form an indoor road network. In our approach, we first detect the user's activities using the built-in sensors in a smartphone. The detected activities constitute the activity sequence. Meanwhile, the user's trajectory is reckoned by Pedestrian Dead Reckoning (PDR). Based on the detected activity sequence and reckoned trajectory, we realize pedestrian localization by matching them to the indoor road network using a Hidden Markov Model. After encountering several special points, the location of the user would converge on the true one. We evaluate our proposed approach using smartphones in two buildings: an office building and a shopping mall. The results show that the proposed approach can realize autonomous pedestrian localization even without knowing the initial point in the environments. The mean offline localization error is about 1.3 m. The results also demonstrate that the proposed approach is robust to activity detection error and PDR estimation error." @default.
- W2043502923 created "2016-06-24" @default.
- W2043502923 creator A5013136999 @default.
- W2043502923 creator A5016850372 @default.
- W2043502923 creator A5022293237 @default.
- W2043502923 creator A5033672865 @default.
- W2043502923 creator A5041042386 @default.
- W2043502923 date "2015-10-01" @default.
- W2043502923 modified "2023-10-15" @default.
- W2043502923 title "Activity Sequence-Based Indoor Pedestrian Localization Using Smartphones" @default.
- W2043502923 cites W1575873342 @default.
- W2043502923 cites W1964120742 @default.
- W2043502923 cites W1968075071 @default.
- W2043502923 cites W1984170608 @default.
- W2043502923 cites W1986377638 @default.
- W2043502923 cites W1991441353 @default.
- W2043502923 cites W1995588456 @default.
- W2043502923 cites W2007387357 @default.
- W2043502923 cites W2008891225 @default.
- W2043502923 cites W2017634428 @default.
- W2043502923 cites W2018596386 @default.
- W2043502923 cites W2024255528 @default.
- W2043502923 cites W2024720822 @default.
- W2043502923 cites W2033881875 @default.
- W2043502923 cites W2041479245 @default.
- W2043502923 cites W2041608059 @default.
- W2043502923 cites W2044831755 @default.
- W2043502923 cites W2054602086 @default.
- W2043502923 cites W2057968074 @default.
- W2043502923 cites W2060273291 @default.
- W2043502923 cites W2060815267 @default.
- W2043502923 cites W2071077565 @default.
- W2043502923 cites W2074614040 @default.
- W2043502923 cites W2074719126 @default.
- W2043502923 cites W2078493525 @default.
- W2043502923 cites W2079251198 @default.
- W2043502923 cites W2096059569 @default.
- W2043502923 cites W2099136733 @default.
- W2043502923 cites W2099817569 @default.
- W2043502923 cites W2100989187 @default.
- W2043502923 cites W2111737705 @default.
- W2043502923 cites W2118975298 @default.
- W2043502923 cites W2125838338 @default.
- W2043502923 cites W2132023300 @default.
- W2043502923 cites W2135822894 @default.
- W2043502923 cites W2148874154 @default.
- W2043502923 cites W2154711971 @default.
- W2043502923 cites W2163965192 @default.
- W2043502923 cites W2163993204 @default.
- W2043502923 cites W2164729653 @default.
- W2043502923 cites W2166315077 @default.
- W2043502923 cites W2169724204 @default.
- W2043502923 cites W2170102584 @default.
- W2043502923 cites W4379358956 @default.
- W2043502923 doi "https://doi.org/10.1109/thms.2014.2368092" @default.
- W2043502923 hasPublicationYear "2015" @default.
- W2043502923 type Work @default.
- W2043502923 sameAs 2043502923 @default.
- W2043502923 citedByCount "120" @default.
- W2043502923 countsByYear W20435029232014 @default.
- W2043502923 countsByYear W20435029232015 @default.
- W2043502923 countsByYear W20435029232016 @default.
- W2043502923 countsByYear W20435029232017 @default.
- W2043502923 countsByYear W20435029232018 @default.
- W2043502923 countsByYear W20435029232019 @default.
- W2043502923 countsByYear W20435029232020 @default.
- W2043502923 countsByYear W20435029232021 @default.
- W2043502923 countsByYear W20435029232022 @default.
- W2043502923 countsByYear W20435029232023 @default.
- W2043502923 crossrefType "journal-article" @default.
- W2043502923 hasAuthorship W2043502923A5013136999 @default.
- W2043502923 hasAuthorship W2043502923A5016850372 @default.
- W2043502923 hasAuthorship W2043502923A5022293237 @default.
- W2043502923 hasAuthorship W2043502923A5033672865 @default.
- W2043502923 hasAuthorship W2043502923A5041042386 @default.
- W2043502923 hasConcept C106165642 @default.
- W2043502923 hasConcept C111919701 @default.
- W2043502923 hasConcept C121332964 @default.
- W2043502923 hasConcept C127413603 @default.
- W2043502923 hasConcept C1276947 @default.
- W2043502923 hasConcept C13662910 @default.
- W2043502923 hasConcept C147021018 @default.
- W2043502923 hasConcept C147176958 @default.
- W2043502923 hasConcept C154945302 @default.
- W2043502923 hasConcept C22212356 @default.
- W2043502923 hasConcept C23224414 @default.
- W2043502923 hasConcept C2777113093 @default.
- W2043502923 hasConcept C2777295749 @default.
- W2043502923 hasConcept C2778112365 @default.
- W2043502923 hasConcept C31972630 @default.
- W2043502923 hasConcept C41008148 @default.
- W2043502923 hasConcept C44154836 @default.
- W2043502923 hasConcept C54355233 @default.
- W2043502923 hasConcept C60229501 @default.
- W2043502923 hasConcept C66938386 @default.
- W2043502923 hasConcept C76155785 @default.
- W2043502923 hasConcept C79403827 @default.
- W2043502923 hasConcept C86803240 @default.