Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043641200> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2043641200 endingPage "943" @default.
- W2043641200 startingPage "929" @default.
- W2043641200 abstract "Numerous works have addressed efficient parallel GF(2m) multiplication based on polynomial basis or some of its variants. For those field degrees where neither irreducible trinomials nor Equally Spaced Polynomials (EPSs) exist, the best area/time performance has been achieved for special-type irreducible pentanomials, which however do not exist for all degrees. In other words, no multiplier architecture has been proposed so far achieving the best performance and, at the same time, being general enough to support any field degrees. In this paper, we propose a new representation, based on what we called Generalized Polynomial Bases (GPBs), covering polynomial bases and the so-called Shifted Polynomial Bases (SPBs) as special cases. In order to study the new representation, we introduce a novel formulation for polynomial basis and its variants, which is able to express concisely all implementation aspects of interest, i.e., gate count, subexpression sharing, and time delay. The methodology enabled by the new formulation is completely general and repetitive in its application, allowing the development of an ad-hoc software tool to derive proofs for area complexity and time delays automatically. As the central contribution of this paper, we introduce some new types of irreducible pentanomials and an associated GPB. Based on the above formulation, we prove that carefully chosen GPBs yield multiplier architectures matching, or even outperforming, the best special-type pentanomials from both the area and time point of view. Most importantly, the proposed GPB architectures require pentanomials existing for all degrees of practical interest. A list of suitable irreducible pentanomials for all degrees less than 1,000 is given in the appendix (Fig. 5 and Tables 4-11 are provided in a separate file containing the body of Appendix, which can be found on the Computer Society Digital Library at >http://doi.ieeecomputersociety.org/10.1109/TC.2012.63)." @default.
- W2043641200 created "2016-06-24" @default.
- W2043641200 creator A5088628660 @default.
- W2043641200 date "2013-05-01" @default.
- W2043641200 modified "2023-10-01" @default.
- W2043641200 title "Fast Parallel GF(2^m) Polynomial Multiplication for All Degrees" @default.
- W2043641200 cites W1508193711 @default.
- W2043641200 cites W1988545107 @default.
- W2043641200 cites W2026003607 @default.
- W2043641200 cites W2038884834 @default.
- W2043641200 cites W2052587062 @default.
- W2043641200 cites W2060746229 @default.
- W2043641200 cites W2076886298 @default.
- W2043641200 cites W2081925317 @default.
- W2043641200 cites W2094812471 @default.
- W2043641200 cites W2122152825 @default.
- W2043641200 cites W2133814675 @default.
- W2043641200 cites W2136484227 @default.
- W2043641200 cites W2149204794 @default.
- W2043641200 cites W2159907844 @default.
- W2043641200 doi "https://doi.org/10.1109/tc.2012.63" @default.
- W2043641200 hasPublicationYear "2013" @default.
- W2043641200 type Work @default.
- W2043641200 sameAs 2043641200 @default.
- W2043641200 citedByCount "32" @default.
- W2043641200 countsByYear W20436412002013 @default.
- W2043641200 countsByYear W20436412002014 @default.
- W2043641200 countsByYear W20436412002015 @default.
- W2043641200 countsByYear W20436412002016 @default.
- W2043641200 countsByYear W20436412002017 @default.
- W2043641200 countsByYear W20436412002018 @default.
- W2043641200 countsByYear W20436412002019 @default.
- W2043641200 countsByYear W20436412002020 @default.
- W2043641200 countsByYear W20436412002021 @default.
- W2043641200 countsByYear W20436412002022 @default.
- W2043641200 crossrefType "journal-article" @default.
- W2043641200 hasAuthorship W2043641200A5088628660 @default.
- W2043641200 hasConcept C114614502 @default.
- W2043641200 hasConcept C118615104 @default.
- W2043641200 hasConcept C134306372 @default.
- W2043641200 hasConcept C156350748 @default.
- W2043641200 hasConcept C173608175 @default.
- W2043641200 hasConcept C2780595030 @default.
- W2043641200 hasConcept C33923547 @default.
- W2043641200 hasConcept C41008148 @default.
- W2043641200 hasConcept C77926391 @default.
- W2043641200 hasConcept C90119067 @default.
- W2043641200 hasConcept C94375191 @default.
- W2043641200 hasConceptScore W2043641200C114614502 @default.
- W2043641200 hasConceptScore W2043641200C118615104 @default.
- W2043641200 hasConceptScore W2043641200C134306372 @default.
- W2043641200 hasConceptScore W2043641200C156350748 @default.
- W2043641200 hasConceptScore W2043641200C173608175 @default.
- W2043641200 hasConceptScore W2043641200C2780595030 @default.
- W2043641200 hasConceptScore W2043641200C33923547 @default.
- W2043641200 hasConceptScore W2043641200C41008148 @default.
- W2043641200 hasConceptScore W2043641200C77926391 @default.
- W2043641200 hasConceptScore W2043641200C90119067 @default.
- W2043641200 hasConceptScore W2043641200C94375191 @default.
- W2043641200 hasIssue "5" @default.
- W2043641200 hasLocation W20436412001 @default.
- W2043641200 hasOpenAccess W2043641200 @default.
- W2043641200 hasPrimaryLocation W20436412001 @default.
- W2043641200 hasRelatedWork W1597042117 @default.
- W2043641200 hasRelatedWork W1968991962 @default.
- W2043641200 hasRelatedWork W1992473518 @default.
- W2043641200 hasRelatedWork W2006550573 @default.
- W2043641200 hasRelatedWork W2050685430 @default.
- W2043641200 hasRelatedWork W2060189445 @default.
- W2043641200 hasRelatedWork W2060413552 @default.
- W2043641200 hasRelatedWork W2189057391 @default.
- W2043641200 hasRelatedWork W2207980562 @default.
- W2043641200 hasRelatedWork W2378104619 @default.
- W2043641200 hasVolume "62" @default.
- W2043641200 isParatext "false" @default.
- W2043641200 isRetracted "false" @default.
- W2043641200 magId "2043641200" @default.
- W2043641200 workType "article" @default.