Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043648244> ?p ?o ?g. }
- W2043648244 abstract "Remote sensing data processing deals with real-life applications with great societal values. For instance urban monitoring, fire detection or flood prediction from remotely sensed multispectral or radar images have a great impact on economical and environmental issues. To treat efficiently the acquired data and provide accurate products, remote sensing has evolved into a multidisciplinary field, where machine learning and signal processing algorithms play an important role nowadays. This paper serves as a survey of methods and applications, and reviews the latest methodological advances in machine learning for remote sensing data analysis." @default.
- W2043648244 created "2016-06-24" @default.
- W2043648244 creator A5039052506 @default.
- W2043648244 date "2009-09-01" @default.
- W2043648244 modified "2023-10-01" @default.
- W2043648244 title "Machine learning in remote sensing data processing" @default.
- W2043648244 cites W1525954826 @default.
- W2043648244 cites W1823934149 @default.
- W2043648244 cites W1955888739 @default.
- W2043648244 cites W1967400946 @default.
- W2043648244 cites W1975580656 @default.
- W2043648244 cites W2010479838 @default.
- W2043648244 cites W2013593251 @default.
- W2043648244 cites W2017900475 @default.
- W2043648244 cites W2043665634 @default.
- W2043648244 cites W2045331152 @default.
- W2043648244 cites W2060663574 @default.
- W2043648244 cites W2067983477 @default.
- W2043648244 cites W2076131212 @default.
- W2043648244 cites W2078296814 @default.
- W2043648244 cites W2078619499 @default.
- W2043648244 cites W2081780938 @default.
- W2043648244 cites W2096334333 @default.
- W2043648244 cites W2098594213 @default.
- W2043648244 cites W2098731573 @default.
- W2043648244 cites W2098758111 @default.
- W2043648244 cites W2101687885 @default.
- W2043648244 cites W2101711129 @default.
- W2043648244 cites W2102049927 @default.
- W2043648244 cites W2103316308 @default.
- W2043648244 cites W2103699041 @default.
- W2043648244 cites W2104269704 @default.
- W2043648244 cites W2106092565 @default.
- W2043648244 cites W2107222994 @default.
- W2043648244 cites W2111282613 @default.
- W2043648244 cites W2111787810 @default.
- W2043648244 cites W2114819256 @default.
- W2043648244 cites W2117741752 @default.
- W2043648244 cites W2118955589 @default.
- W2043648244 cites W2120641882 @default.
- W2043648244 cites W2121970368 @default.
- W2043648244 cites W2123038009 @default.
- W2043648244 cites W2123384846 @default.
- W2043648244 cites W2124128250 @default.
- W2043648244 cites W2124777595 @default.
- W2043648244 cites W2127802986 @default.
- W2043648244 cites W2127970545 @default.
- W2043648244 cites W2128898747 @default.
- W2043648244 cites W2131435419 @default.
- W2043648244 cites W2132147719 @default.
- W2043648244 cites W2133213508 @default.
- W2043648244 cites W2134663338 @default.
- W2043648244 cites W2134733633 @default.
- W2043648244 cites W2136236240 @default.
- W2043648244 cites W2137900926 @default.
- W2043648244 cites W2139205074 @default.
- W2043648244 cites W2139211176 @default.
- W2043648244 cites W2140232272 @default.
- W2043648244 cites W2142012908 @default.
- W2043648244 cites W2147043781 @default.
- W2043648244 cites W2148511782 @default.
- W2043648244 cites W2150045166 @default.
- W2043648244 cites W2151056738 @default.
- W2043648244 cites W2153409933 @default.
- W2043648244 cites W2153864221 @default.
- W2043648244 cites W2155796519 @default.
- W2043648244 cites W2156316030 @default.
- W2043648244 cites W2156418736 @default.
- W2043648244 cites W2157321686 @default.
- W2043648244 cites W2157790742 @default.
- W2043648244 cites W2159062751 @default.
- W2043648244 cites W2159874418 @default.
- W2043648244 cites W2163970536 @default.
- W2043648244 cites W2164330327 @default.
- W2043648244 cites W2165049595 @default.
- W2043648244 cites W2165755981 @default.
- W2043648244 cites W2166302761 @default.
- W2043648244 cites W2168867644 @default.
- W2043648244 cites W2168876499 @default.
- W2043648244 cites W2169042894 @default.
- W2043648244 cites W2248082352 @default.
- W2043648244 cites W4233760599 @default.
- W2043648244 cites W4251475102 @default.
- W2043648244 cites W59495185 @default.
- W2043648244 doi "https://doi.org/10.1109/mlsp.2009.5306233" @default.
- W2043648244 hasPublicationYear "2009" @default.
- W2043648244 type Work @default.
- W2043648244 sameAs 2043648244 @default.
- W2043648244 citedByCount "32" @default.
- W2043648244 countsByYear W20436482442014 @default.
- W2043648244 countsByYear W20436482442015 @default.
- W2043648244 countsByYear W20436482442017 @default.
- W2043648244 countsByYear W20436482442018 @default.
- W2043648244 countsByYear W20436482442019 @default.
- W2043648244 countsByYear W20436482442020 @default.
- W2043648244 countsByYear W20436482442021 @default.
- W2043648244 countsByYear W20436482442022 @default.
- W2043648244 countsByYear W20436482442023 @default.
- W2043648244 crossrefType "proceedings-article" @default.
- W2043648244 hasAuthorship W2043648244A5039052506 @default.