Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043669668> ?p ?o ?g. }
- W2043669668 endingPage "1656" @default.
- W2043669668 startingPage "1641" @default.
- W2043669668 abstract "This paper investigates an optimal quantizer design problem for multisensor estimation of a hidden Markov model (HMMs) whose description depends on unknown parameters. The sensor measurements are simply binary quantized and transmitted to a remote fusion center over noisy flat fading wireless channels under an average sum transmit power constraint. The objective is to determine a set of optimal quantization thresholds and sensor transmit powers, called an optimal policy, which minimizes the long run average of a weighted combination of the expected state estimation error and sum transmit power. We analyze the problem by formulating an adaptive Markov decision process (MDP) problem. In this framework, adaptive optimal control policies are obtained using a nonstationary value iteration (NVI) scheme and are termed as NVI-adaptive policies. These NVI-adaptive policies are adapted to the HMM parameter estimates obtained via a strongly consistent maximum likelihood estimator. In particular, HMM parameter estimation is performed by a recursive expectation-maximization (EM) algorithm which computes estimates of the HMM parameters by maximizing a relative entropy information measure using the received quantized observations and the trajectory of the MDP. Under some regularity assumptions on the observation probability distributions and a geometric ergodicity condition on an extended Markov chain, the maximum-likelihood estimator is shown to be strongly consistent. It is shown that the NVI-adaptive policy based on this sequence of strongly consistent HMM parameter estimates is (asymptotically, under appropriate assumptions) average-optimal. Essentially, it minimizes the long run average cost of the weighted combination of the expected state estimation error and sum transmit power across the sensors for the HMM with true parameters in a time-asymptotic sense. The advantage of this scheme is that the policies are obtained recursively without the need to solve the Bellman equation at each time step, which can be computationally prohibitive. As is usual with value iteration schemes, practical implementation of the NVI-adaptive policy requires discretization of the state and action space, which results in some loss of optimality. Nevertheless, numerical results illustrate the asymptotic convergence properties of the parameter estimates and the asymptotically close to optimal performance of the adaptive MDP algorithm compared to the performance of an MDP based dynamic quantization and power allocation algorithm designed with perfect knowledge of the true parameters." @default.
- W2043669668 created "2016-06-24" @default.
- W2043669668 creator A5031318621 @default.
- W2043669668 creator A5057431380 @default.
- W2043669668 date "2012-07-01" @default.
- W2043669668 modified "2023-09-27" @default.
- W2043669668 title "Dynamic Quantization and Power Allocation for Multisensor Estimation of Hidden Markov Models" @default.
- W2043669668 cites W1061340565 @default.
- W2043669668 cites W1568229137 @default.
- W2043669668 cites W1971879416 @default.
- W2043669668 cites W1972679863 @default.
- W2043669668 cites W1989197122 @default.
- W2043669668 cites W2007321142 @default.
- W2043669668 cites W2011165625 @default.
- W2043669668 cites W2021134523 @default.
- W2043669668 cites W2046637502 @default.
- W2043669668 cites W2046791159 @default.
- W2043669668 cites W2063142364 @default.
- W2043669668 cites W2067029462 @default.
- W2043669668 cites W2070477213 @default.
- W2043669668 cites W2077574412 @default.
- W2043669668 cites W2078273556 @default.
- W2043669668 cites W2086699924 @default.
- W2043669668 cites W2101847234 @default.
- W2043669668 cites W2108290973 @default.
- W2043669668 cites W2111885161 @default.
- W2043669668 cites W2112698444 @default.
- W2043669668 cites W2115916404 @default.
- W2043669668 cites W2121340892 @default.
- W2043669668 cites W2124458906 @default.
- W2043669668 cites W2125838338 @default.
- W2043669668 cites W2132670804 @default.
- W2043669668 cites W2133417941 @default.
- W2043669668 cites W2134811708 @default.
- W2043669668 cites W2143116909 @default.
- W2043669668 cites W2149083914 @default.
- W2043669668 cites W2153623795 @default.
- W2043669668 cites W2156506627 @default.
- W2043669668 cites W2157721994 @default.
- W2043669668 cites W2158267587 @default.
- W2043669668 cites W2169387407 @default.
- W2043669668 cites W2169872491 @default.
- W2043669668 cites W2320680700 @default.
- W2043669668 cites W2334782222 @default.
- W2043669668 cites W3124485411 @default.
- W2043669668 cites W4245744559 @default.
- W2043669668 cites W4250206648 @default.
- W2043669668 cites W595252221 @default.
- W2043669668 doi "https://doi.org/10.1109/tac.2011.2179420" @default.
- W2043669668 hasPublicationYear "2012" @default.
- W2043669668 type Work @default.
- W2043669668 sameAs 2043669668 @default.
- W2043669668 citedByCount "5" @default.
- W2043669668 countsByYear W20436696682013 @default.
- W2043669668 countsByYear W20436696682014 @default.
- W2043669668 countsByYear W20436696682015 @default.
- W2043669668 countsByYear W20436696682018 @default.
- W2043669668 crossrefType "journal-article" @default.
- W2043669668 hasAuthorship W2043669668A5031318621 @default.
- W2043669668 hasAuthorship W2043669668A5057431380 @default.
- W2043669668 hasBestOaLocation W20436696682 @default.
- W2043669668 hasConcept C105795698 @default.
- W2043669668 hasConcept C106189395 @default.
- W2043669668 hasConcept C11413529 @default.
- W2043669668 hasConcept C126255220 @default.
- W2043669668 hasConcept C154945302 @default.
- W2043669668 hasConcept C159886148 @default.
- W2043669668 hasConcept C167928553 @default.
- W2043669668 hasConcept C185429906 @default.
- W2043669668 hasConcept C23224414 @default.
- W2043669668 hasConcept C2775924081 @default.
- W2043669668 hasConcept C28855332 @default.
- W2043669668 hasConcept C33923547 @default.
- W2043669668 hasConcept C41008148 @default.
- W2043669668 hasConcept C47446073 @default.
- W2043669668 hasConcept C98763669 @default.
- W2043669668 hasConceptScore W2043669668C105795698 @default.
- W2043669668 hasConceptScore W2043669668C106189395 @default.
- W2043669668 hasConceptScore W2043669668C11413529 @default.
- W2043669668 hasConceptScore W2043669668C126255220 @default.
- W2043669668 hasConceptScore W2043669668C154945302 @default.
- W2043669668 hasConceptScore W2043669668C159886148 @default.
- W2043669668 hasConceptScore W2043669668C167928553 @default.
- W2043669668 hasConceptScore W2043669668C185429906 @default.
- W2043669668 hasConceptScore W2043669668C23224414 @default.
- W2043669668 hasConceptScore W2043669668C2775924081 @default.
- W2043669668 hasConceptScore W2043669668C28855332 @default.
- W2043669668 hasConceptScore W2043669668C33923547 @default.
- W2043669668 hasConceptScore W2043669668C41008148 @default.
- W2043669668 hasConceptScore W2043669668C47446073 @default.
- W2043669668 hasConceptScore W2043669668C98763669 @default.
- W2043669668 hasIssue "7" @default.
- W2043669668 hasLocation W20436696681 @default.
- W2043669668 hasLocation W20436696682 @default.
- W2043669668 hasOpenAccess W2043669668 @default.
- W2043669668 hasPrimaryLocation W20436696681 @default.
- W2043669668 hasRelatedWork W1503902952 @default.
- W2043669668 hasRelatedWork W2026691440 @default.