Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043716521> ?p ?o ?g. }
- W2043716521 endingPage "467" @default.
- W2043716521 startingPage "449" @default.
- W2043716521 abstract "Precise detection of discrete motor events like the onsets of voluntary muscle contractions is a prerequisite for various psychophysiological approaches in sensorimotor system analysis. In biomedical research and clinical diagnosis, motor events frequently are determined from surface electromyographic (SEMG) signals by some computerized detection algorithm. However, little is known about the reliability and accuracy of these methods, which frequently rely on intuitive and heuristic criteria. Therefore, the systematic approach to computerized detection of discrete motor events from SEMG signals presented by this paper fills a basic gap in EMG signal processing. Based upon a dynamic process model for the SEMG signal, a formal detection scheme is established which incorporates the essential processing modules common to the majority of algorithms. In addition, using concepts of statistically optimal change detection in random processes, a new model-based algorithm is presented which serves as a reference for optimum performance. The validity of this concept is demonstrated for the specific example of accurate detection of muscle activation onsets in rapid voluntary contractions; the estimation error (i.e., the deviation between estimated and true onset time) was evaluated by statistical simulations for three representative methods. Results show a substantial decrease of performance of traditional methods in the case of highly variable dynamic muscle activation profiles and/or superimposed activation patterns (e.g., due to a secondary motor task simultaneously executed by the same muscle). The model-based approach provided significantly more accurate results, even when the exact model parameters were unknown but estimated from the SEMG signal actually measured. It is concluded that the detection algorithm has to be critically taken into consideration during interpretation of motor events resolved from SEMG signals. The process model together with the corresponding statistically optimal detector represents an efficient tool for selecting appropriate detection algorithms for a particular experimental condition, and it allows a quantitative assessment of their performance." @default.
- W2043716521 created "2016-06-24" @default.
- W2043716521 creator A5060376204 @default.
- W2043716521 creator A5079625469 @default.
- W2043716521 date "1999-07-01" @default.
- W2043716521 modified "2023-10-06" @default.
- W2043716521 title "Objective motor response onset detection in surface myoelectric signals" @default.
- W2043716521 cites W1971438754 @default.
- W2043716521 cites W1972244584 @default.
- W2043716521 cites W1981904416 @default.
- W2043716521 cites W1983732105 @default.
- W2043716521 cites W1983933808 @default.
- W2043716521 cites W1987789147 @default.
- W2043716521 cites W1989792031 @default.
- W2043716521 cites W1997184885 @default.
- W2043716521 cites W2002309879 @default.
- W2043716521 cites W2008706653 @default.
- W2043716521 cites W2018937511 @default.
- W2043716521 cites W2026596443 @default.
- W2043716521 cites W2032394057 @default.
- W2043716521 cites W2033364771 @default.
- W2043716521 cites W2039928606 @default.
- W2043716521 cites W2041195270 @default.
- W2043716521 cites W2046799834 @default.
- W2043716521 cites W2048613687 @default.
- W2043716521 cites W2051903196 @default.
- W2043716521 cites W2052525022 @default.
- W2043716521 cites W2067977148 @default.
- W2043716521 cites W2068538622 @default.
- W2043716521 cites W2069139112 @default.
- W2043716521 cites W2070219616 @default.
- W2043716521 cites W2070681720 @default.
- W2043716521 cites W2071303183 @default.
- W2043716521 cites W2078884959 @default.
- W2043716521 cites W2079245400 @default.
- W2043716521 cites W2083560507 @default.
- W2043716521 cites W2087378819 @default.
- W2043716521 cites W2090536307 @default.
- W2043716521 cites W2107113545 @default.
- W2043716521 cites W2110096613 @default.
- W2043716521 cites W2113508851 @default.
- W2043716521 cites W2113616884 @default.
- W2043716521 cites W2116943081 @default.
- W2043716521 cites W2118395035 @default.
- W2043716521 cites W2118613493 @default.
- W2043716521 cites W2136908787 @default.
- W2043716521 cites W2139045199 @default.
- W2043716521 cites W2141287671 @default.
- W2043716521 cites W2143232596 @default.
- W2043716521 cites W2152416968 @default.
- W2043716521 cites W2154804136 @default.
- W2043716521 cites W2165103043 @default.
- W2043716521 cites W2168638869 @default.
- W2043716521 cites W4238806952 @default.
- W2043716521 cites W2056315586 @default.
- W2043716521 doi "https://doi.org/10.1016/s1350-4533(99)00067-3" @default.
- W2043716521 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10624741" @default.
- W2043716521 hasPublicationYear "1999" @default.
- W2043716521 type Work @default.
- W2043716521 sameAs 2043716521 @default.
- W2043716521 citedByCount "197" @default.
- W2043716521 countsByYear W20437165212012 @default.
- W2043716521 countsByYear W20437165212013 @default.
- W2043716521 countsByYear W20437165212014 @default.
- W2043716521 countsByYear W20437165212015 @default.
- W2043716521 countsByYear W20437165212016 @default.
- W2043716521 countsByYear W20437165212017 @default.
- W2043716521 countsByYear W20437165212018 @default.
- W2043716521 countsByYear W20437165212019 @default.
- W2043716521 countsByYear W20437165212020 @default.
- W2043716521 countsByYear W20437165212021 @default.
- W2043716521 countsByYear W20437165212022 @default.
- W2043716521 countsByYear W20437165212023 @default.
- W2043716521 crossrefType "journal-article" @default.
- W2043716521 hasAuthorship W2043716521A5060376204 @default.
- W2043716521 hasAuthorship W2043716521A5079625469 @default.
- W2043716521 hasConcept C104267543 @default.
- W2043716521 hasConcept C111919701 @default.
- W2043716521 hasConcept C121332964 @default.
- W2043716521 hasConcept C153180895 @default.
- W2043716521 hasConcept C154945302 @default.
- W2043716521 hasConcept C163258240 @default.
- W2043716521 hasConcept C169760540 @default.
- W2043716521 hasConcept C173801870 @default.
- W2043716521 hasConcept C199360897 @default.
- W2043716521 hasConcept C2777515770 @default.
- W2043716521 hasConcept C2779843651 @default.
- W2043716521 hasConcept C28490314 @default.
- W2043716521 hasConcept C41008148 @default.
- W2043716521 hasConcept C43214815 @default.
- W2043716521 hasConcept C62520636 @default.
- W2043716521 hasConcept C84462506 @default.
- W2043716521 hasConcept C86803240 @default.
- W2043716521 hasConcept C9390403 @default.
- W2043716521 hasConcept C98045186 @default.
- W2043716521 hasConceptScore W2043716521C104267543 @default.
- W2043716521 hasConceptScore W2043716521C111919701 @default.
- W2043716521 hasConceptScore W2043716521C121332964 @default.