Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043913960> ?p ?o ?g. }
- W2043913960 endingPage "430" @default.
- W2043913960 startingPage "423" @default.
- W2043913960 abstract "The study investigates the performance of image classifiers for landscape-scale land cover mapping and the relevance of ancillary data for the classification success in order to assess and to quantify the importance of these components in image classification. Specifically tested are the performance of maximum likelihood classification (MLC), artificial neural networks (ANN) and discriminant analysis (DA) based on Landsat7 ETM+ spectral data in combination with topographic measures and NDVI. ANN produced high accuracies of more than 75% also with limited input information, while MLC and DA produced comparable results only by incorporating ancillary data into the classification process. The superiority of ANN classification was less pronounced on the level of the single land cover classes. The use of ancillary data generally increased classification accuracy and showed a similar potential for increasing classification accuracy than the selection of the classifier. Therefore, a stronger focus on the development of appropriate and optimised sets of input variables is suggested. Also the definition and selection of land cover classes has shown to be crucial and not to be simply adaptable from existing land cover class schemes. A stronger research focus towards discriminating land cover classes by their typical spectral, topographic or seasonal properties is therefore suggested to advance image classification." @default.
- W2043913960 created "2016-06-24" @default.
- W2043913960 creator A5005660483 @default.
- W2043913960 creator A5036930272 @default.
- W2043913960 creator A5065337836 @default.
- W2043913960 creator A5080309274 @default.
- W2043913960 date "2009-12-01" @default.
- W2043913960 modified "2023-10-03" @default.
- W2043913960 title "Classifiers vs. input variables—The drivers in image classification for land cover mapping" @default.
- W2043913960 cites W1573265117 @default.
- W2043913960 cites W1972228432 @default.
- W2043913960 cites W1976454692 @default.
- W2043913960 cites W1976818331 @default.
- W2043913960 cites W1978537719 @default.
- W2043913960 cites W1980191009 @default.
- W2043913960 cites W1987051959 @default.
- W2043913960 cites W1991449819 @default.
- W2043913960 cites W2000051326 @default.
- W2043913960 cites W2004188365 @default.
- W2043913960 cites W2005125125 @default.
- W2043913960 cites W2007435888 @default.
- W2043913960 cites W2010842832 @default.
- W2043913960 cites W2022106816 @default.
- W2043913960 cites W2040242246 @default.
- W2043913960 cites W2046339565 @default.
- W2043913960 cites W2056217087 @default.
- W2043913960 cites W2056830726 @default.
- W2043913960 cites W2056890418 @default.
- W2043913960 cites W2063944200 @default.
- W2043913960 cites W2064952133 @default.
- W2043913960 cites W2065800647 @default.
- W2043913960 cites W2074463943 @default.
- W2043913960 cites W2081345410 @default.
- W2043913960 cites W2089564362 @default.
- W2043913960 cites W2091230924 @default.
- W2043913960 cites W2092313418 @default.
- W2043913960 cites W2093678292 @default.
- W2043913960 cites W2094534263 @default.
- W2043913960 cites W2102675444 @default.
- W2043913960 cites W2102767685 @default.
- W2043913960 cites W2111653599 @default.
- W2043913960 cites W2114828048 @default.
- W2043913960 cites W2119412805 @default.
- W2043913960 cites W2128593163 @default.
- W2043913960 cites W2130269771 @default.
- W2043913960 cites W2130697739 @default.
- W2043913960 cites W2133267571 @default.
- W2043913960 cites W2136783177 @default.
- W2043913960 cites W2138408852 @default.
- W2043913960 cites W2139582718 @default.
- W2043913960 cites W2146341366 @default.
- W2043913960 cites W2148842444 @default.
- W2043913960 cites W2168678594 @default.
- W2043913960 cites W2168809519 @default.
- W2043913960 cites W2169698545 @default.
- W2043913960 cites W2170133700 @default.
- W2043913960 doi "https://doi.org/10.1016/j.jag.2009.08.002" @default.
- W2043913960 hasPublicationYear "2009" @default.
- W2043913960 type Work @default.
- W2043913960 sameAs 2043913960 @default.
- W2043913960 citedByCount "47" @default.
- W2043913960 countsByYear W20439139602012 @default.
- W2043913960 countsByYear W20439139602013 @default.
- W2043913960 countsByYear W20439139602014 @default.
- W2043913960 countsByYear W20439139602015 @default.
- W2043913960 countsByYear W20439139602016 @default.
- W2043913960 countsByYear W20439139602017 @default.
- W2043913960 countsByYear W20439139602018 @default.
- W2043913960 countsByYear W20439139602019 @default.
- W2043913960 countsByYear W20439139602020 @default.
- W2043913960 countsByYear W20439139602021 @default.
- W2043913960 countsByYear W20439139602022 @default.
- W2043913960 crossrefType "journal-article" @default.
- W2043913960 hasAuthorship W2043913960A5005660483 @default.
- W2043913960 hasAuthorship W2043913960A5036930272 @default.
- W2043913960 hasAuthorship W2043913960A5065337836 @default.
- W2043913960 hasAuthorship W2043913960A5080309274 @default.
- W2043913960 hasConcept C110083411 @default.
- W2043913960 hasConcept C115961682 @default.
- W2043913960 hasConcept C120665830 @default.
- W2043913960 hasConcept C121332964 @default.
- W2043913960 hasConcept C124101348 @default.
- W2043913960 hasConcept C127413603 @default.
- W2043913960 hasConcept C147176958 @default.
- W2043913960 hasConcept C148483581 @default.
- W2043913960 hasConcept C153180895 @default.
- W2043913960 hasConcept C1549246 @default.
- W2043913960 hasConcept C154945302 @default.
- W2043913960 hasConcept C18903297 @default.
- W2043913960 hasConcept C192209626 @default.
- W2043913960 hasConcept C205649164 @default.
- W2043913960 hasConcept C25989453 @default.
- W2043913960 hasConcept C2780408538 @default.
- W2043913960 hasConcept C2780428219 @default.
- W2043913960 hasConcept C2780648208 @default.
- W2043913960 hasConcept C41008148 @default.
- W2043913960 hasConcept C4792198 @default.
- W2043913960 hasConcept C50644808 @default.