Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043916285> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2043916285 abstract "Identifying protective antigens from bacterial pathogens is important for developing vaccines. Most computational methods for predicting protein antigenicity rely on sequence similarity between a query protein sequence and at least one known antigen. Such methods limit our ability to predict novel antigens (i.e., antigens that are not homologous to any known antigen). Therefore, there is an urgent need for alignment-free computational methods for reliable prediction of protective antigens. We evaluated the discriminative power of four different amino acid composition derived feature representations using three classification methods (Logistic Regression, Support Vector Machine, and Random Forest) on a cross validation data set of 193 protective bacterial antigens and 193 non-antigenic bacterial proteins. Our results show that, with all four data representations, Random Forest classifiers consistently outperform other classifiers. We compared HRF50, one of the best performing Random Forest classifiers with VaxiJen and SignalP on independent test sets derived from the Chlamydia trachomatis and Bartonella proteomes. Our results show that our HRF50 predictor outperforms VaxiJen and is competitive with SignalP and ANTIGENpro in predicting protective antigens. We further showed that when we combine SignalP with HRF50, the resulting method, which we call BacGen, yields performance that is comparable to or better than that of ANTIGENpro in predicting antigens in bacterial sequences. We conclude that amino acid sequence composition derived features can be effectively used to design alignment-free methods for predicting protein antigenicity using Random Forest classifiers. BacGen is available as an online server at:http://ailab.cs.iastate.edu/bacgen/." @default.
- W2043916285 created "2016-06-24" @default.
- W2043916285 creator A5004737962 @default.
- W2043916285 creator A5074103258 @default.
- W2043916285 creator A5079233454 @default.
- W2043916285 date "2012-10-07" @default.
- W2043916285 modified "2023-09-30" @default.
- W2043916285 title "Predicting protective bacterial antigens using random forest classifiers" @default.
- W2043916285 cites W1496604422 @default.
- W2043916285 cites W1555243480 @default.
- W2043916285 cites W1570741102 @default.
- W2043916285 cites W1607040979 @default.
- W2043916285 cites W1608462934 @default.
- W2043916285 cites W1984794455 @default.
- W2043916285 cites W1986830331 @default.
- W2043916285 cites W1987218429 @default.
- W2043916285 cites W1990675829 @default.
- W2043916285 cites W2009741912 @default.
- W2043916285 cites W2017321063 @default.
- W2043916285 cites W2022905067 @default.
- W2043916285 cites W2025150647 @default.
- W2043916285 cites W2040455921 @default.
- W2043916285 cites W2045911289 @default.
- W2043916285 cites W2049108850 @default.
- W2043916285 cites W2058731099 @default.
- W2043916285 cites W2063524713 @default.
- W2043916285 cites W2069130539 @default.
- W2043916285 cites W2076282513 @default.
- W2043916285 cites W2079948773 @default.
- W2043916285 cites W2083409341 @default.
- W2043916285 cites W2090390840 @default.
- W2043916285 cites W2096495474 @default.
- W2043916285 cites W2102367710 @default.
- W2043916285 cites W2106393550 @default.
- W2043916285 cites W2107432340 @default.
- W2043916285 cites W2110828252 @default.
- W2043916285 cites W2118131043 @default.
- W2043916285 cites W2119870871 @default.
- W2043916285 cites W2129834345 @default.
- W2043916285 cites W2132433679 @default.
- W2043916285 cites W2142856684 @default.
- W2043916285 cites W2144369911 @default.
- W2043916285 cites W2152116196 @default.
- W2043916285 cites W2152770371 @default.
- W2043916285 cites W2154058033 @default.
- W2043916285 cites W2156039063 @default.
- W2043916285 cites W2156875887 @default.
- W2043916285 cites W2158714788 @default.
- W2043916285 cites W2161746138 @default.
- W2043916285 cites W2166087152 @default.
- W2043916285 cites W2168977926 @default.
- W2043916285 cites W2170547958 @default.
- W2043916285 cites W2170700642 @default.
- W2043916285 cites W2171295581 @default.
- W2043916285 cites W2911964244 @default.
- W2043916285 cites W4235859326 @default.
- W2043916285 cites W4243296770 @default.
- W2043916285 doi "https://doi.org/10.1145/2382936.2382991" @default.
- W2043916285 hasPublicationYear "2012" @default.
- W2043916285 type Work @default.
- W2043916285 sameAs 2043916285 @default.
- W2043916285 citedByCount "4" @default.
- W2043916285 countsByYear W20439162852014 @default.
- W2043916285 countsByYear W20439162852019 @default.
- W2043916285 countsByYear W20439162852021 @default.
- W2043916285 countsByYear W20439162852023 @default.
- W2043916285 crossrefType "proceedings-article" @default.
- W2043916285 hasAuthorship W2043916285A5004737962 @default.
- W2043916285 hasAuthorship W2043916285A5074103258 @default.
- W2043916285 hasAuthorship W2043916285A5079233454 @default.
- W2043916285 hasConcept C153180895 @default.
- W2043916285 hasConcept C154945302 @default.
- W2043916285 hasConcept C169258074 @default.
- W2043916285 hasConcept C41008148 @default.
- W2043916285 hasConceptScore W2043916285C153180895 @default.
- W2043916285 hasConceptScore W2043916285C154945302 @default.
- W2043916285 hasConceptScore W2043916285C169258074 @default.
- W2043916285 hasConceptScore W2043916285C41008148 @default.
- W2043916285 hasFunder F4320332161 @default.
- W2043916285 hasLocation W20439162851 @default.
- W2043916285 hasOpenAccess W2043916285 @default.
- W2043916285 hasPrimaryLocation W20439162851 @default.
- W2043916285 hasRelatedWork W2037342633 @default.
- W2043916285 hasRelatedWork W2240965754 @default.
- W2043916285 hasRelatedWork W2275058042 @default.
- W2043916285 hasRelatedWork W2508925980 @default.
- W2043916285 hasRelatedWork W2997958394 @default.
- W2043916285 hasRelatedWork W3005023910 @default.
- W2043916285 hasRelatedWork W3044272884 @default.
- W2043916285 hasRelatedWork W3133324635 @default.
- W2043916285 hasRelatedWork W3217110323 @default.
- W2043916285 hasRelatedWork W4242609709 @default.
- W2043916285 isParatext "false" @default.
- W2043916285 isRetracted "false" @default.
- W2043916285 magId "2043916285" @default.
- W2043916285 workType "article" @default.