Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043923114> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2043923114 abstract "In this note it is proven that a regular Riemannian s-manifold of noncompact type (see below) cannot be immersed isometrically and equivariantly in R. Our notation, terminology and basic facts will be those of [3]. Let (M, {S,}) be a connected periodic regular s-manifold which is metrizable, i.e. there is a Riemannian metric g on M which is invariant with respect to the symmetries {S,: x E M}. (Periodicity means that (M, {S,)) has finite order [3, p. 4].) We have the group of isometries I(M, g) which is transitive on M [3, p. 2]. Contained in I(M, g) we have the group of transvections G = Tr(M, {S }) [3, p. 57] which is generated by the elementary transvections, i.e. by the isometries Sx o Sy-', x, y E M. About the group G one knows: (1) G is a connected Lie group [3, II 32, 125]. (2) G is transitive on M [3, II 33]. It is known [3, IV 24] that under the above conditions (M, {S5}) admits two complementary foliations F, 2 such that: (a) IF is invariant and its leaves are regular s-manifolds with solvable group of transvections. (b) 2 is weakly invariant and its leaves are regular s-manifolds with semisimple group of transvections (compare [2, p. 208]). DEFINITION. We shall say that (M, {S,}) is of noncompact type if the foliation S2 has noncompact leaves. The objective of this note is to prove the following. THEOREM. Let (M, {S,1) be a connected periodic, regular s-manifold which is metrizable and of noncompact type. Then (M, {S,}) admits no isometric equivariant immersion into a finite-dimensional real representation of G = Tr(M, {S,}). PROOF. Let us assume the existence of such an isometric immersion (p, f): (G, M) -(I(Rn), Rn), where T is a Lie group monomorphism and f is an isometric Received by the editors January 8, 1982. AMS (MOS) subject classifications (1970). Primary 53C40, 53B25." @default.
- W2043923114 created "2016-06-24" @default.
- W2043923114 creator A5070071779 @default.
- W2043923114 date "1983-01-01" @default.
- W2043923114 modified "2023-09-26" @default.
- W2043923114 title "Regular Riemannian $s$-manifolds of noncompact type" @default.
- W2043923114 cites W1538067513 @default.
- W2043923114 cites W1984556430 @default.
- W2043923114 cites W2017123618 @default.
- W2043923114 cites W2019558169 @default.
- W2043923114 cites W2071355416 @default.
- W2043923114 cites W2087640086 @default.
- W2043923114 doi "https://doi.org/10.1090/s0002-9939-1983-0691288-0" @default.
- W2043923114 hasPublicationYear "1983" @default.
- W2043923114 type Work @default.
- W2043923114 sameAs 2043923114 @default.
- W2043923114 citedByCount "0" @default.
- W2043923114 crossrefType "journal-article" @default.
- W2043923114 hasAuthorship W2043923114A5070071779 @default.
- W2043923114 hasBestOaLocation W20439231141 @default.
- W2043923114 hasConcept C114614502 @default.
- W2043923114 hasConcept C121332964 @default.
- W2043923114 hasConcept C187915474 @default.
- W2043923114 hasConcept C18903297 @default.
- W2043923114 hasConcept C190470478 @default.
- W2043923114 hasConcept C202444582 @default.
- W2043923114 hasConcept C2524010 @default.
- W2043923114 hasConcept C2777299769 @default.
- W2043923114 hasConcept C2779593128 @default.
- W2043923114 hasConcept C2781311116 @default.
- W2043923114 hasConcept C33923547 @default.
- W2043923114 hasConcept C37914503 @default.
- W2043923114 hasConcept C62520636 @default.
- W2043923114 hasConcept C86803240 @default.
- W2043923114 hasConcept C96469262 @default.
- W2043923114 hasConceptScore W2043923114C114614502 @default.
- W2043923114 hasConceptScore W2043923114C121332964 @default.
- W2043923114 hasConceptScore W2043923114C187915474 @default.
- W2043923114 hasConceptScore W2043923114C18903297 @default.
- W2043923114 hasConceptScore W2043923114C190470478 @default.
- W2043923114 hasConceptScore W2043923114C202444582 @default.
- W2043923114 hasConceptScore W2043923114C2524010 @default.
- W2043923114 hasConceptScore W2043923114C2777299769 @default.
- W2043923114 hasConceptScore W2043923114C2779593128 @default.
- W2043923114 hasConceptScore W2043923114C2781311116 @default.
- W2043923114 hasConceptScore W2043923114C33923547 @default.
- W2043923114 hasConceptScore W2043923114C37914503 @default.
- W2043923114 hasConceptScore W2043923114C62520636 @default.
- W2043923114 hasConceptScore W2043923114C86803240 @default.
- W2043923114 hasConceptScore W2043923114C96469262 @default.
- W2043923114 hasLocation W20439231141 @default.
- W2043923114 hasOpenAccess W2043923114 @default.
- W2043923114 hasPrimaryLocation W20439231141 @default.
- W2043923114 hasRelatedWork W1961594947 @default.
- W2043923114 hasRelatedWork W1979918877 @default.
- W2043923114 hasRelatedWork W1988609869 @default.
- W2043923114 hasRelatedWork W1998273317 @default.
- W2043923114 hasRelatedWork W2002083162 @default.
- W2043923114 hasRelatedWork W2003286344 @default.
- W2043923114 hasRelatedWork W2022630825 @default.
- W2043923114 hasRelatedWork W2041285439 @default.
- W2043923114 hasRelatedWork W2047941610 @default.
- W2043923114 hasRelatedWork W2062690877 @default.
- W2043923114 hasRelatedWork W2091571641 @default.
- W2043923114 hasRelatedWork W2137527126 @default.
- W2043923114 hasRelatedWork W2185452661 @default.
- W2043923114 hasRelatedWork W2333422052 @default.
- W2043923114 hasRelatedWork W2482234004 @default.
- W2043923114 hasRelatedWork W248930467 @default.
- W2043923114 hasRelatedWork W2493380647 @default.
- W2043923114 hasRelatedWork W2510318230 @default.
- W2043923114 hasRelatedWork W2964004119 @default.
- W2043923114 hasRelatedWork W2160955891 @default.
- W2043923114 isParatext "false" @default.
- W2043923114 isRetracted "false" @default.
- W2043923114 magId "2043923114" @default.
- W2043923114 workType "article" @default.