Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043955238> ?p ?o ?g. }
- W2043955238 endingPage "5259" @default.
- W2043955238 startingPage "5251" @default.
- W2043955238 abstract "We address structured covariance estimation in elliptical distributions by assuming that the covariance is a priori known to belong to a given convex set, e.g., the set of Toeplitz or banded matrices. We consider the General Method of Moments (GMM) optimization applied to robust Tyler's scatter M-estimator subject to these convex constraints. Unfortunately, GMM turns out to be non-convex due to the objective. Instead, we propose a new COCA estimator-a convex relaxation which can be efficiently solved. We prove that the relaxation is tight in the unconstrained case for a finite number of samples, and in the constrained case asymptotically. We then illustrate the advantages of COCA in synthetic simulations with structured compound Gaussian distributions. In these examples, COCA outperforms competing methods such as Tyler's estimator and its projection onto the structure set." @default.
- W2043955238 created "2016-06-24" @default.
- W2043955238 creator A5031252824 @default.
- W2043955238 creator A5091732723 @default.
- W2043955238 date "2014-10-01" @default.
- W2043955238 modified "2023-09-28" @default.
- W2043955238 title "Tyler's Covariance Matrix Estimator in Elliptical Models With Convex Structure" @default.
- W2043955238 cites W1542938076 @default.
- W2043955238 cites W1554493780 @default.
- W2043955238 cites W1965518343 @default.
- W2043955238 cites W1965928820 @default.
- W2043955238 cites W1976261516 @default.
- W2043955238 cites W1979573625 @default.
- W2043955238 cites W1995721524 @default.
- W2043955238 cites W1999640431 @default.
- W2043955238 cites W2008330147 @default.
- W2043955238 cites W2008418230 @default.
- W2043955238 cites W2014937354 @default.
- W2043955238 cites W2019945856 @default.
- W2043955238 cites W2025742588 @default.
- W2043955238 cites W2034783362 @default.
- W2043955238 cites W2042981096 @default.
- W2043955238 cites W2047458638 @default.
- W2043955238 cites W2068135051 @default.
- W2043955238 cites W2081687244 @default.
- W2043955238 cites W2085543388 @default.
- W2043955238 cites W2086911332 @default.
- W2043955238 cites W2093608496 @default.
- W2043955238 cites W2094644779 @default.
- W2043955238 cites W2113642685 @default.
- W2043955238 cites W2115141757 @default.
- W2043955238 cites W2118771073 @default.
- W2043955238 cites W2157921975 @default.
- W2043955238 cites W2161503240 @default.
- W2043955238 cites W2162654459 @default.
- W2043955238 cites W2166279893 @default.
- W2043955238 cites W2168318931 @default.
- W2043955238 cites W2170588123 @default.
- W2043955238 cites W2912522929 @default.
- W2043955238 cites W2963719002 @default.
- W2043955238 cites W3099401462 @default.
- W2043955238 cites W3101788651 @default.
- W2043955238 cites W3106319742 @default.
- W2043955238 cites W3121631155 @default.
- W2043955238 cites W4251238138 @default.
- W2043955238 doi "https://doi.org/10.1109/tsp.2014.2348951" @default.
- W2043955238 hasPublicationYear "2014" @default.
- W2043955238 type Work @default.
- W2043955238 sameAs 2043955238 @default.
- W2043955238 citedByCount "39" @default.
- W2043955238 countsByYear W20439552382014 @default.
- W2043955238 countsByYear W20439552382015 @default.
- W2043955238 countsByYear W20439552382016 @default.
- W2043955238 countsByYear W20439552382017 @default.
- W2043955238 countsByYear W20439552382018 @default.
- W2043955238 countsByYear W20439552382019 @default.
- W2043955238 countsByYear W20439552382020 @default.
- W2043955238 countsByYear W20439552382021 @default.
- W2043955238 countsByYear W20439552382022 @default.
- W2043955238 countsByYear W20439552382023 @default.
- W2043955238 crossrefType "journal-article" @default.
- W2043955238 hasAuthorship W2043955238A5031252824 @default.
- W2043955238 hasAuthorship W2043955238A5091732723 @default.
- W2043955238 hasBestOaLocation W20439552382 @default.
- W2043955238 hasConcept C105795698 @default.
- W2043955238 hasConcept C112680207 @default.
- W2043955238 hasConcept C11413529 @default.
- W2043955238 hasConcept C126255220 @default.
- W2043955238 hasConcept C126372606 @default.
- W2043955238 hasConcept C147710293 @default.
- W2043955238 hasConcept C157972887 @default.
- W2043955238 hasConcept C178650346 @default.
- W2043955238 hasConcept C180877172 @default.
- W2043955238 hasConcept C185142706 @default.
- W2043955238 hasConcept C185429906 @default.
- W2043955238 hasConcept C202444582 @default.
- W2043955238 hasConcept C2524010 @default.
- W2043955238 hasConcept C28826006 @default.
- W2043955238 hasConcept C33923547 @default.
- W2043955238 hasConcept C83042196 @default.
- W2043955238 hasConceptScore W2043955238C105795698 @default.
- W2043955238 hasConceptScore W2043955238C112680207 @default.
- W2043955238 hasConceptScore W2043955238C11413529 @default.
- W2043955238 hasConceptScore W2043955238C126255220 @default.
- W2043955238 hasConceptScore W2043955238C126372606 @default.
- W2043955238 hasConceptScore W2043955238C147710293 @default.
- W2043955238 hasConceptScore W2043955238C157972887 @default.
- W2043955238 hasConceptScore W2043955238C178650346 @default.
- W2043955238 hasConceptScore W2043955238C180877172 @default.
- W2043955238 hasConceptScore W2043955238C185142706 @default.
- W2043955238 hasConceptScore W2043955238C185429906 @default.
- W2043955238 hasConceptScore W2043955238C202444582 @default.
- W2043955238 hasConceptScore W2043955238C2524010 @default.
- W2043955238 hasConceptScore W2043955238C28826006 @default.
- W2043955238 hasConceptScore W2043955238C33923547 @default.
- W2043955238 hasConceptScore W2043955238C83042196 @default.
- W2043955238 hasFunder F4320326823 @default.
- W2043955238 hasIssue "20" @default.