Matches in SemOpenAlex for { <https://semopenalex.org/work/W2043967470> ?p ?o ?g. }
- W2043967470 endingPage "e88" @default.
- W2043967470 startingPage "e88" @default.
- W2043967470 abstract "The abundance of low-temperature waste heat produced by industry and automobile exhaust necessitates the development of power generation with thermoelectric (TE) materials. Commercially available bismuth telluride-based alloys are generally used near room temperature. Materials that are composed of p-type bismuth telluride, which are suitable for low-temperature power generation (near 380 K), were successfully obtained through Sb-alloying, which suppresses detrimental intrinsic conduction at elevated temperatures by increasing hole concentrations and material band gaps. Furthermore, hot deformation (HD)-induced multi-scale microstructures were successfully realized in the high-performance p-type TE materials. Enhanced textures and donor-like effects all contributed to improved electrical transport properties. Multiple phonon scattering centers, including local nanostructures induced by dynamic recrystallization and high-density lattice defects, significantly reduced the lattice thermal conductivity. These combined effects resulted in observable improvement of ZT over the entire temperature range, with all TE parameters measured along the in-plane direction. The maximum ZT of 1.3 for the hot-deformed Bi0.3Sb1.7Te3 alloy was reached at 380 K, whereas the average ZTav of 1.18 was found in the range of 300–480 K, indicating potential for application in low-temperature TE power generation. Thermoelectric materials, which convert temperature differences and electric voltage into each other, serve in refrigeration or power generation applications. Currently, bismuth telluride (Bi2Te3) and its alloys are the most widely used thermoelectric materials. Tie-Jun Zhu, Xin-Bing Zhao and co-workers from Zhejiang University, China, have now investigated the effect of antimony (Sb) alloying on bismuth tellurides through a series of polycrystalline solid solutions of Bi2-xSbxTe3—where x varies between 1.4 and 1.8—prepared by hot deformation. Systematic tuning of the alloy composition showed that higher antimony content raised the material's optimal conversion temperature by repressing undesirable conduction. This effect arises from an increase in both the hole concentration and the band gap in the material. For a composition where x is 1.7, the alloy showed optimal performances at 380 kelvin—a suitable temperature for low-temperature power generation from the waste heat generated by industry or vehicles. The p-type bismuth telluride-based polycrystalline materials suiting for low-temperature power generations (near 380 K) have been obtained through Sb-alloying and HD, which suppresses the detrimental effect of intrinsic conduction at elevated temperature via increasing the hole concentration and band gap. The hot-deformed Bi0.3Sb1.7Te3 alloy, not usual composition Bi0.5Sb1.5Te3, shows a maximum ZT of 1.3 at 380 K, indicating a bright application potential in low-temperature power generations." @default.
- W2043967470 created "2016-06-24" @default.
- W2043967470 creator A5009916557 @default.
- W2043967470 creator A5029734776 @default.
- W2043967470 creator A5048100640 @default.
- W2043967470 creator A5086146868 @default.
- W2043967470 creator A5088954556 @default.
- W2043967470 creator A5090922635 @default.
- W2043967470 date "2014-02-01" @default.
- W2043967470 modified "2023-10-01" @default.
- W2043967470 title "Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction" @default.
- W2043967470 cites W1541928641 @default.
- W2043967470 cites W1969431789 @default.
- W2043967470 cites W1971324228 @default.
- W2043967470 cites W1972988084 @default.
- W2043967470 cites W1976486711 @default.
- W2043967470 cites W1977147427 @default.
- W2043967470 cites W1984134216 @default.
- W2043967470 cites W1992623932 @default.
- W2043967470 cites W1994715177 @default.
- W2043967470 cites W2003133633 @default.
- W2043967470 cites W2006096763 @default.
- W2043967470 cites W2007578111 @default.
- W2043967470 cites W2008329500 @default.
- W2043967470 cites W2008375944 @default.
- W2043967470 cites W2008945710 @default.
- W2043967470 cites W2010928853 @default.
- W2043967470 cites W2014200239 @default.
- W2043967470 cites W2016269665 @default.
- W2043967470 cites W2017528664 @default.
- W2043967470 cites W2020883486 @default.
- W2043967470 cites W2022950685 @default.
- W2043967470 cites W2023541914 @default.
- W2043967470 cites W2025817155 @default.
- W2043967470 cites W2029002366 @default.
- W2043967470 cites W2034423971 @default.
- W2043967470 cites W2035245188 @default.
- W2043967470 cites W2036746022 @default.
- W2043967470 cites W2044782133 @default.
- W2043967470 cites W2045048386 @default.
- W2043967470 cites W2052408214 @default.
- W2043967470 cites W2053820215 @default.
- W2043967470 cites W2053920899 @default.
- W2043967470 cites W2054872949 @default.
- W2043967470 cites W2058975976 @default.
- W2043967470 cites W2065520369 @default.
- W2043967470 cites W2066554614 @default.
- W2043967470 cites W2068326806 @default.
- W2043967470 cites W2070589916 @default.
- W2043967470 cites W2078338131 @default.
- W2043967470 cites W2078967655 @default.
- W2043967470 cites W2083785063 @default.
- W2043967470 cites W2091473129 @default.
- W2043967470 cites W2094314090 @default.
- W2043967470 cites W2094972715 @default.
- W2043967470 cites W2107009410 @default.
- W2043967470 cites W2108059697 @default.
- W2043967470 cites W2151592156 @default.
- W2043967470 cites W2161332314 @default.
- W2043967470 cites W2323324528 @default.
- W2043967470 cites W2464151937 @default.
- W2043967470 doi "https://doi.org/10.1038/am.2013.86" @default.
- W2043967470 hasPublicationYear "2014" @default.
- W2043967470 type Work @default.
- W2043967470 sameAs 2043967470 @default.
- W2043967470 citedByCount "269" @default.
- W2043967470 countsByYear W20439674702014 @default.
- W2043967470 countsByYear W20439674702015 @default.
- W2043967470 countsByYear W20439674702016 @default.
- W2043967470 countsByYear W20439674702017 @default.
- W2043967470 countsByYear W20439674702018 @default.
- W2043967470 countsByYear W20439674702019 @default.
- W2043967470 countsByYear W20439674702020 @default.
- W2043967470 countsByYear W20439674702021 @default.
- W2043967470 countsByYear W20439674702022 @default.
- W2043967470 countsByYear W20439674702023 @default.
- W2043967470 crossrefType "journal-article" @default.
- W2043967470 hasAuthorship W2043967470A5009916557 @default.
- W2043967470 hasAuthorship W2043967470A5029734776 @default.
- W2043967470 hasAuthorship W2043967470A5048100640 @default.
- W2043967470 hasAuthorship W2043967470A5086146868 @default.
- W2043967470 hasAuthorship W2043967470A5088954556 @default.
- W2043967470 hasAuthorship W2043967470A5090922635 @default.
- W2043967470 hasBestOaLocation W20439674701 @default.
- W2043967470 hasConcept C112625512 @default.
- W2043967470 hasConcept C117127486 @default.
- W2043967470 hasConcept C121332964 @default.
- W2043967470 hasConcept C159985019 @default.
- W2043967470 hasConcept C191897082 @default.
- W2043967470 hasConcept C192562407 @default.
- W2043967470 hasConcept C207365445 @default.
- W2043967470 hasConcept C2777038907 @default.
- W2043967470 hasConcept C2778397788 @default.
- W2043967470 hasConcept C2780786182 @default.
- W2043967470 hasConcept C49040817 @default.
- W2043967470 hasConcept C533668322 @default.
- W2043967470 hasConcept C57863236 @default.
- W2043967470 hasConcept C63024428 @default.