Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044005280> ?p ?o ?g. }
- W2044005280 endingPage "13445" @default.
- W2044005280 startingPage "13437" @default.
- W2044005280 abstract "The antibiotic lactacystin was reported to covalently modify β-subunit X of the mammalian 20 S proteasome and inhibit several of its peptidase activities. However, we demonstrate that [3H]lactacystin treatment modifies all the proteasome's catalytic β-subunits. Lactacystin and its more potent derivative β-lactone irreversibly inhibit protein breakdown and the chymotryptic, tryptic, and peptidylglutamyl activities of purified 20 S and 26 S particles, although at different rates. Exposure to these agents for 1 to 2 h reduced the degradation of short- and long-lived proteins in four different mammalian cell lines. Unlike peptide aldehyde inhibitors, lactacystin and the β-lactone do not inhibit lysosomal degradation of an endocytosed protein. These agents block class I antigen presentation of a model protein, ovalbumin (synthesized endogenously or loaded exogenously), but do not affect presentation of the peptide epitope SIINFEKL, which does not require proteolysis for presentation. Generation of most peptides required for formation of stable class I heterodimers is also inhibited. Because these agents inhibited protein breakdown and antigen presentation similarly in interferon-γ-treated cells (where proteasomes contain LMP2 and LMP7 subunits in place of X and Y), all β-subunits must be affected similarly. These findings confirm our prior conclusions that proteasomes catalyze the bulk of protein breakdown in mammalian cells and generate the majority of class I-bound epitopes for immune recognition. The antibiotic lactacystin was reported to covalently modify β-subunit X of the mammalian 20 S proteasome and inhibit several of its peptidase activities. However, we demonstrate that [3H]lactacystin treatment modifies all the proteasome's catalytic β-subunits. Lactacystin and its more potent derivative β-lactone irreversibly inhibit protein breakdown and the chymotryptic, tryptic, and peptidylglutamyl activities of purified 20 S and 26 S particles, although at different rates. Exposure to these agents for 1 to 2 h reduced the degradation of short- and long-lived proteins in four different mammalian cell lines. Unlike peptide aldehyde inhibitors, lactacystin and the β-lactone do not inhibit lysosomal degradation of an endocytosed protein. These agents block class I antigen presentation of a model protein, ovalbumin (synthesized endogenously or loaded exogenously), but do not affect presentation of the peptide epitope SIINFEKL, which does not require proteolysis for presentation. Generation of most peptides required for formation of stable class I heterodimers is also inhibited. Because these agents inhibited protein breakdown and antigen presentation similarly in interferon-γ-treated cells (where proteasomes contain LMP2 and LMP7 subunits in place of X and Y), all β-subunits must be affected similarly. These findings confirm our prior conclusions that proteasomes catalyze the bulk of protein breakdown in mammalian cells and generate the majority of class I-bound epitopes for immune recognition. MHC 1The abbreviations used are: MHC, major histocompatibility complex; IFN-γ, interferon-γ; LLnL,N-acetyl-l-leucinyl-l-leucinal-l-norleucinal; FITC, fluorescein isothiocyanate; KLH, keyhole limpet hemocyanin; PAGE, polyacrylamide gel electrophoresis; AMC, 7-amino-4-methylcoumarin. 1The abbreviations used are: MHC, major histocompatibility complex; IFN-γ, interferon-γ; LLnL,N-acetyl-l-leucinyl-l-leucinal-l-norleucinal; FITC, fluorescein isothiocyanate; KLH, keyhole limpet hemocyanin; PAGE, polyacrylamide gel electrophoresis; AMC, 7-amino-4-methylcoumarin. class I molecules typically bind 8–9-residue peptides derived from cellular or viral proteins. Most of these peptides are generated by protein breakdown in the cytosol and are transported by the transporter associated with antigen presentation transporter into the endoplasmic reticulum (1York I.A. Rock K.L. Annu. Rev. Immunol. 1996; 14: 369-396Crossref PubMed Scopus (511) Google Scholar). Here the peptide, a MHC class I heavy chain, and a β2-microglobulin molecule associate, and the complex is then transported through the Golgi apparatus to the plasma membrane (1York I.A. Rock K.L. Annu. Rev. Immunol. 1996; 14: 369-396Crossref PubMed Scopus (511) Google Scholar). This process allows T lymphocytes to screen for cells that are synthesizing foreign or abnormal proteins. The mechanisms responsible for the generation of the class I-presented peptides had been unclear until recently. However, a variety of recent evidence has suggested that the proteasome plays a primary role in this process and that during the turnover of cytosolic and nuclear proteins a fraction of the peptides generated by the proteasome are utilized for MHC class I presentation (1York I.A. Rock K.L. Annu. Rev. Immunol. 1996; 14: 369-396Crossref PubMed Scopus (511) Google Scholar, 2Goldberg A.L. Rock K.L. Nature. 1992; 357: 375-379Crossref PubMed Scopus (503) Google Scholar, 3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar).Proteasomes are found in the nucleus and cytosol of all cells and are essential components of the ATP-ubiquitin-dependent pathway for protein degradation. The 20 S proteasome is a 700-kDa particle with multiple peptidase activities, including a chymotryptic-, tryptic-, and peptidylglutamyl-like activity (4Orlowski M. Biochemistry. 1990; 29: 10289-10297Crossref PubMed Scopus (412) Google Scholar, 5Rivett J. Biochem. J. 1993; 291: 1-10Crossref PubMed Scopus (380) Google Scholar, 6Coux O. Tanaka K. Goldberg A.L. Annu. Rev. Biochem. 1996; 65: 801-847Crossref PubMed Scopus (2223) Google Scholar). It is a cylindrical-shaped structure composed of four rings, the outer two each contain seven α-subunits and the inner two each contain seven β-subunits (7Grziwa A. Baumeister W. Dahlmann B. Kopp F. FEBS Lett. 1991; 290: 186-192Crossref PubMed Scopus (110) Google Scholar, 8Lowe J. Stock D. Jap B. Zwickl P. Baumeister W. Huber A. Science. 1995; 268: 533-539Crossref PubMed Scopus (1369) Google Scholar). Proteolysis occurs in the central chamber of this particle and is catalyzed through a nucleophilic attack on the peptide bond by the N-terminal threonine hydroxyl groups on certain β-subunits, named X (ε), Y(δ), Z (HCO), and their homologues LMP2, LMP7, and LMP10 (MECL-1) (9Zwickl P. Kleinz J. Baumeister W. Nat. Struct. Biol. 1994; 1: 765-771Crossref PubMed Scopus (170) Google Scholar, 10Seemüller E. Lupas A. Stock D. Löwe J. Huber R. Baumeister W. Science. 1995; 268: 579-582Crossref PubMed Scopus (582) Google Scholar, 11Fenteany G. Standaert R.F. Lane W.S. Choi S. Corey E.J. Schreiber S.L. Science. 1995; 268: 726-731Crossref PubMed Scopus (1493) Google Scholar, 12Brannigan J.A. Dodson G. Duggleby H.J. Moody P.C. Smith J.L. Tomchick D.R. Murzin A.G. Nature. 1995; 378: 416-419Crossref PubMed Scopus (540) Google Scholar). The 20 S particle functions as the proteolytic core of a larger 26 S (2000 kDa) ATP-dependent proteasome complex which selectively degrades proteins that are modified by conjugation to multiple ubiquitin molecules (6Coux O. Tanaka K. Goldberg A.L. Annu. Rev. Biochem. 1996; 65: 801-847Crossref PubMed Scopus (2223) Google Scholar, 13Hershko A. Ciechanover A. Annu. Rev. Biochem. 1992; 61: 761-807Crossref PubMed Scopus (1192) Google Scholar, 14Rechsteiner M. Hoffman L. Dubiel W. J. Biol. Chem. 1993; 268: 6065-6068Abstract Full Text PDF PubMed Google Scholar). Although the ubiquitin-proteasome pathway is clearly essential for the rapid degradation of short-lived or highly abnormal proteins and polypeptides in yeast (15Seufert W. Jentsch S. EMBO J. 1992; 11: 3077-3080Crossref PubMed Scopus (121) Google Scholar) and mammalian cells (16Gropper R. Brandt R.A. Elias S. Bearer C.F. Mayer A. Schwartz A.L. Ciechanover A. J. Biol. Chem. 1991; 266: 3602-3610Abstract Full Text PDF PubMed Google Scholar, 17Ciechanover A. Finley D. Varshavsky A. Cell. 1984; 37: 57-66Abstract Full Text PDF PubMed Scopus (373) Google Scholar, 18Kulka R.G. Raboy B. Schuster R. Parag H.A. Diamond G. Ciechanover A. Marcus M. J. Biol. Chem. 1988; 263: 15726-15731Abstract Full Text PDF PubMed Google Scholar, 19Deveraux Q. Ustrell V. Pickart C. Rechsteiner M. J. Biol. Chem. 1994; 269: 7059-7061Abstract Full Text PDF PubMed Google Scholar), its role in degradation of the bulk of cell proteins, which are long-lived, is uncertain (16Gropper R. Brandt R.A. Elias S. Bearer C.F. Mayer A. Schwartz A.L. Ciechanover A. J. Biol. Chem. 1991; 266: 3602-3610Abstract Full Text PDF PubMed Google Scholar, 20Ciechanover A. Cell. 1994; 79: 13-21Abstract Full Text PDF PubMed Scopus (1587) Google Scholar).Several lines of evidence had suggested that the proteasome was also responsible for the generation of some class I-presented peptides. Two of the proteasome's catalytic β-subunits, LMP7 and LMP2, are encoded in the MHC region (21Monaco J.J. McDevitt H.O. Hum. Immunol. 1986; 15: 416-426Crossref PubMed Scopus (73) Google Scholar, 22Monaco J.J. Immunol. Today. 1992; 13: 173-179Abstract Full Text PDF PubMed Scopus (394) Google Scholar), and the absence of these subunits in mutant cells or mice decreases the efficiency of presentation of certain antigens (23Fehling H.J. Swat W. Laplace C. Kuhn R. Rajewsky K. Muller U. von Boehmer H. Science. 1994; 265: 1234-1237Crossref PubMed Scopus (441) Google Scholar, 24Cerundolo V. Kelly A. Elliott T. Trowsdale J. Townsend A. Eur. J. Immunol. 1995; 25: 554-562Crossref PubMed Scopus (109) Google Scholar, 25Van Kaer L. Ashton-Rickardt P.G. Eichelberger M. Gaczynska M. Nagashima K. Rock K.L. Goldberg A.L. Doherty P.C. Tonegawa S. Immunity. 1994; 1: 533-541Abstract Full Text PDF PubMed Scopus (364) Google Scholar, 26Sibille C. Gould K.G. Willard-Gallo K. Thomson S. Rivett A.J. Powis S. Butcher G.W. DeBaetselier P. Curr. Biol. 1995; 5: 923-930Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar). Furthermore, inhibiting ubiquitin conjugation in a TS mutant decreased antigen presentation of a model protein (27Michalek M.T. Grant E.P. Gramm C. Goldberg A.L. Rock K.L. Nature. 1993; 363: 552-554Crossref PubMed Scopus (283) Google Scholar). On the other hand, modifications of a protein that stimulate its ubiquitinylation and degradation by 26 S proteasomes enhance its rate of MHC class I presentation (28Grant E.P. Michalek M.T. Goldberg A.L. Rock K.L. J. Immunol. 1995; 155: 3750-3758PubMed Google Scholar). Finally, when 20 S proteasomes are incubated with a protein for extended periods, they can generate some class I-binding peptides, although such experiments involve highly nonphysiological conditions (29Boes B. Hengel H. Ruppert T. Multhaup G. Koszinowski U.H. Kloetzel P.-M. J. Exp. Med. 1994; 179: 901-909Crossref PubMed Scopus (280) Google Scholar, 30Dick L.R. Aldrich C. Jameson S.C. Moomaw C.R. Pramanik B.C. Doyle C.K. DeMartino G.N. Bevan M.J. Forman J.M. Slaughter C.A. J. Immunol. 1994; 152: 3884-3894PubMed Google Scholar, 31Niedermann G. Butz S. Ihlenfeldt H.G. Grimm R. Lucchiari M. Hoschützky H. Jung G. Maier B. Eichmann K. Immunity. 1995; 2: 289-299Abstract Full Text PDF PubMed Scopus (210) Google Scholar).More definitive evidence for the proteasome's general importance in antigen presentation in vivo requires methods to specifically inhibit proteasome function in intact cells. Recently, certain peptide aldehydes (such asN-acetyl-l-leucinyl-l-leucinal-l-norleucinal, LLnL, andN-carbobenzoxyl-l-leucinyl-l-leucinyl-l-norvalinal, MG115) have been shown to strongly inhibit multiple peptidase activities of proteasomes and to reduce protein hydrolysis (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar). Moreover, these agents can enter cells and block the degradation of most cellular proteins and the generation of the majority of class I-presented peptides (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar). Although these peptide aldehydes can also inhibit the cysteine proteases found in lysosomes and calpains (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar), several findings argued that the inhibition of protein degradation and antigen presentation was due to effects on the proteasome. For example, the rank order of potencies of different peptide aldehydes in inhibiting the proteasome was the same as for blocking protein degradation and antigen presentation and did not correlate with efficacy against cysteine proteases (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar). Also, inhibition of these cysteine proteases did not affect protein breakdown or antigen presentation. Nevertheless, more selective proteasome inhibitors are needed to establish definitively a major role for the proteasome in these processes.A chemically distinct type of proteasome inhibitor is the antibiotic lactacystin which was isolated from Streptomyces by Omura and colleagues (32Omura S. Matsuzaki K. Fujimoto T. Kosuge K. Fuzuya T. Fujita S. Nakagawa A. J. Antibiot. ( Tokyo ). 1991; 44: 113-118Crossref PubMed Scopus (530) Google Scholar) and synthesized by Corey and colleagues (33Fenteany G. Standaert R.F. Reichard G.A. Corey E.J. Schreiber S.L. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 3358-3362Crossref PubMed Scopus (227) Google Scholar). Fenteany et al. (11Fenteany G. Standaert R.F. Lane W.S. Choi S. Corey E.J. Schreiber S.L. Science. 1995; 268: 726-731Crossref PubMed Scopus (1493) Google Scholar) have shown that [3H]lactacystin bound covalently to a polypeptide identified as proteasome β-subunit X in bovine brain cells and that lactacystin could irreversibly inhibit the chymotryptic- and tryptic-like peptidase activity and reversibly inhibit the post-acidic activity of purified proteasomes. Lactacystin spontaneously hydrolyzes into clasto-lactacystin β-lactone, which appears to be the active inhibitor that reacts with the N-terminal threonine of subunit X (34Dick L.R. Cruikshank A.A. Grenier L. Melandri F.D. Nunes S.L. Stein R.L. J. Biol. Chem. 1996; 271: 7273-7276Abstract Full Text PDF PubMed Scopus (355) Google Scholar). Because lactacystin and the β-lactone appeared to be highly specific inhibitors that do not affect cysteine or serine proteases, they are potentially very useful research tools. We therefore examined whether they inhibit proteasomes that contain β-type subunits not expressed in neurons (e.g. LMP7, LMP2, and MECL-1), whether they reduce protein hydrolysis in vitro and in cells, and whether they can block MHC class I antigen presentation. MHC 1The abbreviations used are: MHC, major histocompatibility complex; IFN-γ, interferon-γ; LLnL,N-acetyl-l-leucinyl-l-leucinal-l-norleucinal; FITC, fluorescein isothiocyanate; KLH, keyhole limpet hemocyanin; PAGE, polyacrylamide gel electrophoresis; AMC, 7-amino-4-methylcoumarin. 1The abbreviations used are: MHC, major histocompatibility complex; IFN-γ, interferon-γ; LLnL,N-acetyl-l-leucinyl-l-leucinal-l-norleucinal; FITC, fluorescein isothiocyanate; KLH, keyhole limpet hemocyanin; PAGE, polyacrylamide gel electrophoresis; AMC, 7-amino-4-methylcoumarin. class I molecules typically bind 8–9-residue peptides derived from cellular or viral proteins. Most of these peptides are generated by protein breakdown in the cytosol and are transported by the transporter associated with antigen presentation transporter into the endoplasmic reticulum (1York I.A. Rock K.L. Annu. Rev. Immunol. 1996; 14: 369-396Crossref PubMed Scopus (511) Google Scholar). Here the peptide, a MHC class I heavy chain, and a β2-microglobulin molecule associate, and the complex is then transported through the Golgi apparatus to the plasma membrane (1York I.A. Rock K.L. Annu. Rev. Immunol. 1996; 14: 369-396Crossref PubMed Scopus (511) Google Scholar). This process allows T lymphocytes to screen for cells that are synthesizing foreign or abnormal proteins. The mechanisms responsible for the generation of the class I-presented peptides had been unclear until recently. However, a variety of recent evidence has suggested that the proteasome plays a primary role in this process and that during the turnover of cytosolic and nuclear proteins a fraction of the peptides generated by the proteasome are utilized for MHC class I presentation (1York I.A. Rock K.L. Annu. Rev. Immunol. 1996; 14: 369-396Crossref PubMed Scopus (511) Google Scholar, 2Goldberg A.L. Rock K.L. Nature. 1992; 357: 375-379Crossref PubMed Scopus (503) Google Scholar, 3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar). Proteasomes are found in the nucleus and cytosol of all cells and are essential components of the ATP-ubiquitin-dependent pathway for protein degradation. The 20 S proteasome is a 700-kDa particle with multiple peptidase activities, including a chymotryptic-, tryptic-, and peptidylglutamyl-like activity (4Orlowski M. Biochemistry. 1990; 29: 10289-10297Crossref PubMed Scopus (412) Google Scholar, 5Rivett J. Biochem. J. 1993; 291: 1-10Crossref PubMed Scopus (380) Google Scholar, 6Coux O. Tanaka K. Goldberg A.L. Annu. Rev. Biochem. 1996; 65: 801-847Crossref PubMed Scopus (2223) Google Scholar). It is a cylindrical-shaped structure composed of four rings, the outer two each contain seven α-subunits and the inner two each contain seven β-subunits (7Grziwa A. Baumeister W. Dahlmann B. Kopp F. FEBS Lett. 1991; 290: 186-192Crossref PubMed Scopus (110) Google Scholar, 8Lowe J. Stock D. Jap B. Zwickl P. Baumeister W. Huber A. Science. 1995; 268: 533-539Crossref PubMed Scopus (1369) Google Scholar). Proteolysis occurs in the central chamber of this particle and is catalyzed through a nucleophilic attack on the peptide bond by the N-terminal threonine hydroxyl groups on certain β-subunits, named X (ε), Y(δ), Z (HCO), and their homologues LMP2, LMP7, and LMP10 (MECL-1) (9Zwickl P. Kleinz J. Baumeister W. Nat. Struct. Biol. 1994; 1: 765-771Crossref PubMed Scopus (170) Google Scholar, 10Seemüller E. Lupas A. Stock D. Löwe J. Huber R. Baumeister W. Science. 1995; 268: 579-582Crossref PubMed Scopus (582) Google Scholar, 11Fenteany G. Standaert R.F. Lane W.S. Choi S. Corey E.J. Schreiber S.L. Science. 1995; 268: 726-731Crossref PubMed Scopus (1493) Google Scholar, 12Brannigan J.A. Dodson G. Duggleby H.J. Moody P.C. Smith J.L. Tomchick D.R. Murzin A.G. Nature. 1995; 378: 416-419Crossref PubMed Scopus (540) Google Scholar). The 20 S particle functions as the proteolytic core of a larger 26 S (2000 kDa) ATP-dependent proteasome complex which selectively degrades proteins that are modified by conjugation to multiple ubiquitin molecules (6Coux O. Tanaka K. Goldberg A.L. Annu. Rev. Biochem. 1996; 65: 801-847Crossref PubMed Scopus (2223) Google Scholar, 13Hershko A. Ciechanover A. Annu. Rev. Biochem. 1992; 61: 761-807Crossref PubMed Scopus (1192) Google Scholar, 14Rechsteiner M. Hoffman L. Dubiel W. J. Biol. Chem. 1993; 268: 6065-6068Abstract Full Text PDF PubMed Google Scholar). Although the ubiquitin-proteasome pathway is clearly essential for the rapid degradation of short-lived or highly abnormal proteins and polypeptides in yeast (15Seufert W. Jentsch S. EMBO J. 1992; 11: 3077-3080Crossref PubMed Scopus (121) Google Scholar) and mammalian cells (16Gropper R. Brandt R.A. Elias S. Bearer C.F. Mayer A. Schwartz A.L. Ciechanover A. J. Biol. Chem. 1991; 266: 3602-3610Abstract Full Text PDF PubMed Google Scholar, 17Ciechanover A. Finley D. Varshavsky A. Cell. 1984; 37: 57-66Abstract Full Text PDF PubMed Scopus (373) Google Scholar, 18Kulka R.G. Raboy B. Schuster R. Parag H.A. Diamond G. Ciechanover A. Marcus M. J. Biol. Chem. 1988; 263: 15726-15731Abstract Full Text PDF PubMed Google Scholar, 19Deveraux Q. Ustrell V. Pickart C. Rechsteiner M. J. Biol. Chem. 1994; 269: 7059-7061Abstract Full Text PDF PubMed Google Scholar), its role in degradation of the bulk of cell proteins, which are long-lived, is uncertain (16Gropper R. Brandt R.A. Elias S. Bearer C.F. Mayer A. Schwartz A.L. Ciechanover A. J. Biol. Chem. 1991; 266: 3602-3610Abstract Full Text PDF PubMed Google Scholar, 20Ciechanover A. Cell. 1994; 79: 13-21Abstract Full Text PDF PubMed Scopus (1587) Google Scholar). Several lines of evidence had suggested that the proteasome was also responsible for the generation of some class I-presented peptides. Two of the proteasome's catalytic β-subunits, LMP7 and LMP2, are encoded in the MHC region (21Monaco J.J. McDevitt H.O. Hum. Immunol. 1986; 15: 416-426Crossref PubMed Scopus (73) Google Scholar, 22Monaco J.J. Immunol. Today. 1992; 13: 173-179Abstract Full Text PDF PubMed Scopus (394) Google Scholar), and the absence of these subunits in mutant cells or mice decreases the efficiency of presentation of certain antigens (23Fehling H.J. Swat W. Laplace C. Kuhn R. Rajewsky K. Muller U. von Boehmer H. Science. 1994; 265: 1234-1237Crossref PubMed Scopus (441) Google Scholar, 24Cerundolo V. Kelly A. Elliott T. Trowsdale J. Townsend A. Eur. J. Immunol. 1995; 25: 554-562Crossref PubMed Scopus (109) Google Scholar, 25Van Kaer L. Ashton-Rickardt P.G. Eichelberger M. Gaczynska M. Nagashima K. Rock K.L. Goldberg A.L. Doherty P.C. Tonegawa S. Immunity. 1994; 1: 533-541Abstract Full Text PDF PubMed Scopus (364) Google Scholar, 26Sibille C. Gould K.G. Willard-Gallo K. Thomson S. Rivett A.J. Powis S. Butcher G.W. DeBaetselier P. Curr. Biol. 1995; 5: 923-930Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar). Furthermore, inhibiting ubiquitin conjugation in a TS mutant decreased antigen presentation of a model protein (27Michalek M.T. Grant E.P. Gramm C. Goldberg A.L. Rock K.L. Nature. 1993; 363: 552-554Crossref PubMed Scopus (283) Google Scholar). On the other hand, modifications of a protein that stimulate its ubiquitinylation and degradation by 26 S proteasomes enhance its rate of MHC class I presentation (28Grant E.P. Michalek M.T. Goldberg A.L. Rock K.L. J. Immunol. 1995; 155: 3750-3758PubMed Google Scholar). Finally, when 20 S proteasomes are incubated with a protein for extended periods, they can generate some class I-binding peptides, although such experiments involve highly nonphysiological conditions (29Boes B. Hengel H. Ruppert T. Multhaup G. Koszinowski U.H. Kloetzel P.-M. J. Exp. Med. 1994; 179: 901-909Crossref PubMed Scopus (280) Google Scholar, 30Dick L.R. Aldrich C. Jameson S.C. Moomaw C.R. Pramanik B.C. Doyle C.K. DeMartino G.N. Bevan M.J. Forman J.M. Slaughter C.A. J. Immunol. 1994; 152: 3884-3894PubMed Google Scholar, 31Niedermann G. Butz S. Ihlenfeldt H.G. Grimm R. Lucchiari M. Hoschützky H. Jung G. Maier B. Eichmann K. Immunity. 1995; 2: 289-299Abstract Full Text PDF PubMed Scopus (210) Google Scholar). More definitive evidence for the proteasome's general importance in antigen presentation in vivo requires methods to specifically inhibit proteasome function in intact cells. Recently, certain peptide aldehydes (such asN-acetyl-l-leucinyl-l-leucinal-l-norleucinal, LLnL, andN-carbobenzoxyl-l-leucinyl-l-leucinyl-l-norvalinal, MG115) have been shown to strongly inhibit multiple peptidase activities of proteasomes and to reduce protein hydrolysis (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar). Moreover, these agents can enter cells and block the degradation of most cellular proteins and the generation of the majority of class I-presented peptides (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar). Although these peptide aldehydes can also inhibit the cysteine proteases found in lysosomes and calpains (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar), several findings argued that the inhibition of protein degradation and antigen presentation was due to effects on the proteasome. For example, the rank order of potencies of different peptide aldehydes in inhibiting the proteasome was the same as for blocking protein degradation and antigen presentation and did not correlate with efficacy against cysteine proteases (3Rock K.L. Gramm C. Rothstein L. Clark K. Stein R. Dick L. Hwang D. Goldberg A.L. Cell. 1994; 78: 761-771Abstract Full Text PDF PubMed Scopus (2178) Google Scholar). Also, inhibition of these cysteine proteases did not affect protein breakdown or antigen presentation. Nevertheless, more selective proteasome inhibitors are needed to establish definitively a major role for the proteasome in these processes. A chemically distinct type of proteasome inhibitor is the antibiotic lactacystin which was isolated from Streptomyces by Omura and colleagues (32Omura S. Matsuzaki K. Fujimoto T. Kosuge K. Fuzuya T. Fujita S. Nakagawa A. J. Antibiot. ( Tokyo ). 1991; 44: 113-118Crossref PubMed Scopus (530) Google Scholar) and synthesized by Corey and colleagues (33Fenteany G. Standaert R.F. Reichard G.A. Corey E.J. Schreiber S.L. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 3358-3362Crossref PubMed Scopus (227) Google Scholar). Fenteany et al. (11Fenteany G. Standaert R.F. Lane W.S. Choi S. Corey E.J. Schreiber S.L. Science. 1995; 268: 726-731Crossref PubMed Scopus (1493) Google Scholar) have shown that [3H]lactacystin bound covalently to a polypeptide identified as proteasome β-subunit X in bovine brain cells and that lactacystin could irreversibly inhibit the chymotryptic- and tryptic-like peptidase activity and reversibly inhibit the post-acidic activity of purified proteasomes. Lactacystin spontaneously hydrolyzes into clasto-lactacystin β-lactone, which appears to be the active inhibitor that reacts with the N-terminal threonine of subunit X (34Dick L.R. Cruikshank A.A. Grenier L. Melandri F.D. Nunes S.L. Stein R.L. J. Biol. Chem. 1996; 271: 7273-7276Abstract Full Text PDF PubMed Scopus (355) Google Scholar). Because lactacystin and the β-lactone appeared to be highly specific inhibitors that do not affect cysteine or serine proteases, they are potentially very useful research tools. We therefore examined whether they inhibit proteasomes that contain β-type subunits not expressed in neurons (e.g. LMP7, LMP2, and MECL-1), whether they reduce protein hydrolysis in vitro and in cells, and whether they can block MHC class I antigen presentation." @default.
- W2044005280 created "2016-06-24" @default.
- W2044005280 creator A5006962945 @default.
- W2044005280 creator A5014058503 @default.
- W2044005280 creator A5021771321 @default.
- W2044005280 creator A5034599652 @default.
- W2044005280 creator A5042702595 @default.
- W2044005280 creator A5057275064 @default.
- W2044005280 creator A5082096834 @default.
- W2044005280 date "1997-05-01" @default.
- W2044005280 modified "2023-10-14" @default.
- W2044005280 title "Lactacystin and clasto-Lactacystin β-Lactone Modify Multiple Proteasome β-Subunits and Inhibit Intracellular Protein Degradation and Major Histocompatibility Complex Class I Antigen Presentation" @default.
- W2044005280 cites W1483817335 @default.
- W2044005280 cites W1487877558 @default.
- W2044005280 cites W1496897161 @default.
- W2044005280 cites W1518612434 @default.
- W2044005280 cites W1528476113 @default.
- W2044005280 cites W1572148375 @default.
- W2044005280 cites W1594617739 @default.
- W2044005280 cites W1608231811 @default.
- W2044005280 cites W1653065940 @default.
- W2044005280 cites W1965187427 @default.
- W2044005280 cites W1972705721 @default.
- W2044005280 cites W1973635674 @default.
- W2044005280 cites W1975460230 @default.
- W2044005280 cites W1981026371 @default.
- W2044005280 cites W1989402394 @default.
- W2044005280 cites W1990449071 @default.
- W2044005280 cites W1996567630 @default.
- W2044005280 cites W1998790265 @default.
- W2044005280 cites W1999741800 @default.
- W2044005280 cites W2000941383 @default.
- W2044005280 cites W2005411001 @default.
- W2044005280 cites W2008744347 @default.
- W2044005280 cites W2010955189 @default.
- W2044005280 cites W2011851534 @default.
- W2044005280 cites W2014458502 @default.
- W2044005280 cites W2033531531 @default.
- W2044005280 cites W2037592320 @default.
- W2044005280 cites W2037612991 @default.
- W2044005280 cites W2052025279 @default.
- W2044005280 cites W2053597753 @default.
- W2044005280 cites W2055418221 @default.
- W2044005280 cites W2057908124 @default.
- W2044005280 cites W2058106838 @default.
- W2044005280 cites W2060736209 @default.
- W2044005280 cites W2062803375 @default.
- W2044005280 cites W2066284211 @default.
- W2044005280 cites W2068692565 @default.
- W2044005280 cites W2071191421 @default.
- W2044005280 cites W2077086653 @default.
- W2044005280 cites W2077147012 @default.
- W2044005280 cites W2077861376 @default.
- W2044005280 cites W2088513299 @default.
- W2044005280 cites W2088749908 @default.
- W2044005280 cites W2092725115 @default.
- W2044005280 cites W2102683915 @default.
- W2044005280 cites W2104710873 @default.
- W2044005280 cites W2125913713 @default.
- W2044005280 cites W2149244862 @default.
- W2044005280 cites W2175093343 @default.
- W2044005280 cites W2178503716 @default.
- W2044005280 cites W263799869 @default.
- W2044005280 cites W4210821890 @default.
- W2044005280 doi "https://doi.org/10.1074/jbc.272.20.13437" @default.
- W2044005280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9148969" @default.
- W2044005280 hasPublicationYear "1997" @default.
- W2044005280 type Work @default.
- W2044005280 sameAs 2044005280 @default.
- W2044005280 citedByCount "376" @default.
- W2044005280 countsByYear W20440052802012 @default.
- W2044005280 countsByYear W20440052802013 @default.
- W2044005280 countsByYear W20440052802014 @default.
- W2044005280 countsByYear W20440052802015 @default.
- W2044005280 countsByYear W20440052802016 @default.
- W2044005280 countsByYear W20440052802017 @default.
- W2044005280 countsByYear W20440052802018 @default.
- W2044005280 countsByYear W20440052802019 @default.
- W2044005280 countsByYear W20440052802020 @default.
- W2044005280 countsByYear W20440052802021 @default.
- W2044005280 countsByYear W20440052802022 @default.
- W2044005280 countsByYear W20440052802023 @default.
- W2044005280 crossrefType "journal-article" @default.
- W2044005280 hasAuthorship W2044005280A5006962945 @default.
- W2044005280 hasAuthorship W2044005280A5014058503 @default.
- W2044005280 hasAuthorship W2044005280A5021771321 @default.
- W2044005280 hasAuthorship W2044005280A5034599652 @default.
- W2044005280 hasAuthorship W2044005280A5042702595 @default.
- W2044005280 hasAuthorship W2044005280A5057275064 @default.
- W2044005280 hasAuthorship W2044005280A5082096834 @default.
- W2044005280 hasConcept C104317684 @default.
- W2044005280 hasConcept C147483822 @default.
- W2044005280 hasConcept C154317977 @default.
- W2044005280 hasConcept C170627219 @default.
- W2044005280 hasConcept C185592680 @default.
- W2044005280 hasConcept C202751555 @default.
- W2044005280 hasConcept C203014093 @default.
- W2044005280 hasConcept C207936829 @default.