Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044007629> ?p ?o ?g. }
- W2044007629 abstract "Oxidation kinetics of Ni-Al (100) alloy surface is investigated at low temperatures (300--600 K) and at different gas pressures using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. Monte Carlo simulations employing the bond order simulation model are used to generate the surface segregated minimum energy initial alloy configurations for use in the MD simulations. In the simulated temperature-pressure-composition regime for Ni-Al alloys, we find that the oxide growth curves follow a logarithmic law beyond an initial transient regime. The oxidation rates for Ni-Al alloys were found to decrease with increasing Ni composition. Structure and dynamical correlations in the metal/oxide/gas environments are used to gain insights into the evolution and morphology of the growing oxide film. Oxidation of Ni-Al alloys is characterized by the absence of Ni-O bond formation. Oxide films formed on the various simulated metal surfaces are amorphous in nature and have a limiting thickness ranging from $ensuremath{sim}1.7text{ }text{nm}$ for pure Al to 1.1 nm for 15% Ni-Al surfaces. Oxide scale analysis indicates significant charge transfer as well as variation in the morphology and structure of the oxide film formed on pure Al and 5% Ni-Al alloy. For oxide scales thicker than 1 nm, the oxide structure in case of pure Al exhibits a mixed tetrahedral $({text{AlO}}_{4}ensuremath{sim}37%)$ and octahedral $({text{AlO}}_{6}ensuremath{sim}19%)$ environment, whereas the oxide scale on Ni-Al alloy surface is almost entirely composed of tetrahedral environment $({text{AlO}}_{4}ensuremath{sim}60%)$ with very little ${text{AlO}}_{6}$ $(<1%)$. The oxide growth kinetic curves are fitted to Arrhenius-type plots to get an estimate of the activation energy barriers for metal oxidation. The activation energy barrier for oxidation on pure Al was found to be 0.3 eV lower than that on 5% Ni-Al surface. Atomistic observations as well as calculated dynamical correlation functions indicate a layer by layer growth on pure Al, whereas a transition from an initial island growth mode $(<75text{ }text{ps})$ to a layer by layer mode $(>100text{ }text{ps})$ occurs in case of 5% Ni-Al alloy. The oxide growth on both pure Al and Ni-Al alloy surfaces occurs by inward anion and outward cation diffusions. The cation diffusion in both the cases is similar, whereas the anion diffusion in case of 5% Ni-Al is 25% lower than pure Al, thereby resulting in reduced self-limiting thickness of oxide scale on the alloy surface. The simulation findings agree well with previously reported experimental observations of oxidation on Ni-Al alloy surface." @default.
- W2044007629 created "2016-06-24" @default.
- W2044007629 creator A5002495805 @default.
- W2044007629 creator A5063950942 @default.
- W2044007629 date "2008-08-15" @default.
- W2044007629 modified "2023-10-01" @default.
- W2044007629 title "Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures" @default.
- W2044007629 cites W1965307173 @default.
- W2044007629 cites W1967408822 @default.
- W2044007629 cites W1970649777 @default.
- W2044007629 cites W1972295667 @default.
- W2044007629 cites W1974908025 @default.
- W2044007629 cites W1976679893 @default.
- W2044007629 cites W1977840798 @default.
- W2044007629 cites W1978760596 @default.
- W2044007629 cites W1978789851 @default.
- W2044007629 cites W1979146779 @default.
- W2044007629 cites W1981033590 @default.
- W2044007629 cites W1981230652 @default.
- W2044007629 cites W1981322979 @default.
- W2044007629 cites W1983295320 @default.
- W2044007629 cites W1984128902 @default.
- W2044007629 cites W1985929986 @default.
- W2044007629 cites W1986492705 @default.
- W2044007629 cites W1987327282 @default.
- W2044007629 cites W1990943185 @default.
- W2044007629 cites W1992615915 @default.
- W2044007629 cites W1995024272 @default.
- W2044007629 cites W1999111103 @default.
- W2044007629 cites W2001676859 @default.
- W2044007629 cites W2001934209 @default.
- W2044007629 cites W2002137676 @default.
- W2044007629 cites W2002915228 @default.
- W2044007629 cites W2003780107 @default.
- W2044007629 cites W2006009797 @default.
- W2044007629 cites W2008251769 @default.
- W2044007629 cites W2009172256 @default.
- W2044007629 cites W2011964841 @default.
- W2044007629 cites W2013005435 @default.
- W2044007629 cites W2015083907 @default.
- W2044007629 cites W2015240911 @default.
- W2044007629 cites W2015745210 @default.
- W2044007629 cites W2021072995 @default.
- W2044007629 cites W2021498992 @default.
- W2044007629 cites W2023062269 @default.
- W2044007629 cites W2024277189 @default.
- W2044007629 cites W2024908230 @default.
- W2044007629 cites W2028424523 @default.
- W2044007629 cites W2032384094 @default.
- W2044007629 cites W2034961722 @default.
- W2044007629 cites W2037068260 @default.
- W2044007629 cites W2042181057 @default.
- W2044007629 cites W2042798550 @default.
- W2044007629 cites W2054340242 @default.
- W2044007629 cites W2058789247 @default.
- W2044007629 cites W2060885573 @default.
- W2044007629 cites W2063397977 @default.
- W2044007629 cites W2064026454 @default.
- W2044007629 cites W2064353594 @default.
- W2044007629 cites W2065082956 @default.
- W2044007629 cites W2066331947 @default.
- W2044007629 cites W2067915865 @default.
- W2044007629 cites W2072959941 @default.
- W2044007629 cites W2073954152 @default.
- W2044007629 cites W2074409595 @default.
- W2044007629 cites W2082731943 @default.
- W2044007629 cites W2085036647 @default.
- W2044007629 cites W2085059741 @default.
- W2044007629 cites W2091185305 @default.
- W2044007629 cites W2092344237 @default.
- W2044007629 cites W2093330841 @default.
- W2044007629 cites W2096946885 @default.
- W2044007629 cites W2118065792 @default.
- W2044007629 cites W2126710272 @default.
- W2044007629 cites W2128120470 @default.
- W2044007629 cites W2128881086 @default.
- W2044007629 cites W2137066075 @default.
- W2044007629 cites W2140068144 @default.
- W2044007629 cites W2153162624 @default.
- W2044007629 cites W2154833099 @default.
- W2044007629 cites W2157386642 @default.
- W2044007629 cites W2162090167 @default.
- W2044007629 cites W2170006871 @default.
- W2044007629 cites W2325017151 @default.
- W2044007629 cites W4241949617 @default.
- W2044007629 cites W4256064846 @default.
- W2044007629 cites W2009050968 @default.
- W2044007629 doi "https://doi.org/10.1103/physrevb.78.085420" @default.
- W2044007629 hasPublicationYear "2008" @default.
- W2044007629 type Work @default.
- W2044007629 sameAs 2044007629 @default.
- W2044007629 citedByCount "46" @default.
- W2044007629 countsByYear W20440076292012 @default.
- W2044007629 countsByYear W20440076292013 @default.
- W2044007629 countsByYear W20440076292014 @default.
- W2044007629 countsByYear W20440076292015 @default.
- W2044007629 countsByYear W20440076292017 @default.
- W2044007629 countsByYear W20440076292018 @default.
- W2044007629 countsByYear W20440076292019 @default.
- W2044007629 countsByYear W20440076292020 @default.