Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044017907> ?p ?o ?g. }
- W2044017907 endingPage "2395" @default.
- W2044017907 startingPage "2381" @default.
- W2044017907 abstract "We introduce a comprehensive and statistical framework in a model free setting for a complete treatment of localized data corruptions due to severe noise sources, e.g., an occluder in the case of a visual recording. Within this framework, we propose: 1) a novel algorithm to efficiently separate, i.e., detect and localize, possible corruptions from a given suspicious data instance and 2) a maximum a posteriori estimator to impute the corrupted data. As a generalization to Euclidean distance, we also propose a novel distance measure, which is based on the ranked deviations among the data attributes and empirically shown to be superior in separating the corruptions. Our algorithm first splits the suspicious instance into parts through a binary partitioning tree in the space of data attributes and iteratively tests those parts to detect local anomalies using the nominal statistics extracted from an uncorrupted (clean) reference data set. Once each part is labeled as anomalous versus normal, the corresponding binary patterns over this tree that characterize corruptions are identified and the affected attributes are imputed. Under a certain conditional independency structure assumed for the binary patterns, we analytically show that the false alarm rate of the introduced algorithm in detecting the corruptions is independent of the data and can be directly set without any parameter tuning. The proposed framework is tested over several well-known machine learning data sets with synthetically generated corruptions and experimentally shown to produce remarkable improvements in terms of classification purposes with strong corruption separation capabilities. Our experiments also indicate that the proposed algorithms outperform the typical approaches and are robust to varying training phase conditions." @default.
- W2044017907 created "2016-06-24" @default.
- W2044017907 creator A5021213636 @default.
- W2044017907 creator A5035853332 @default.
- W2044017907 creator A5089040739 @default.
- W2044017907 date "2015-10-01" @default.
- W2044017907 modified "2023-09-27" @default.
- W2044017907 title "Data Imputation Through the Identification of Local Anomalies" @default.
- W2044017907 cites W121803457 @default.
- W2044017907 cites W1487374707 @default.
- W2044017907 cites W1490322807 @default.
- W2044017907 cites W1502857830 @default.
- W2044017907 cites W1517926209 @default.
- W2044017907 cites W1552576688 @default.
- W2044017907 cites W1663973292 @default.
- W2044017907 cites W1813659000 @default.
- W2044017907 cites W1860991815 @default.
- W2044017907 cites W1979864702 @default.
- W2044017907 cites W1980233801 @default.
- W2044017907 cites W1983479840 @default.
- W2044017907 cites W1988176704 @default.
- W2044017907 cites W1992295377 @default.
- W2044017907 cites W2020502398 @default.
- W2044017907 cites W2028494354 @default.
- W2044017907 cites W2031454541 @default.
- W2044017907 cites W2044758663 @default.
- W2044017907 cites W2049633694 @default.
- W2044017907 cites W2050522395 @default.
- W2044017907 cites W2073940236 @default.
- W2044017907 cites W2074551195 @default.
- W2044017907 cites W2096863518 @default.
- W2044017907 cites W2097073572 @default.
- W2044017907 cites W2097713019 @default.
- W2044017907 cites W2098477387 @default.
- W2044017907 cites W2100281586 @default.
- W2044017907 cites W2101618025 @default.
- W2044017907 cites W2109169614 @default.
- W2044017907 cites W2114508695 @default.
- W2044017907 cites W2122646361 @default.
- W2044017907 cites W2124161253 @default.
- W2044017907 cites W2128221272 @default.
- W2044017907 cites W2129078811 @default.
- W2044017907 cites W2129905273 @default.
- W2044017907 cites W2132870739 @default.
- W2044017907 cites W2138244030 @default.
- W2044017907 cites W2148593155 @default.
- W2044017907 cites W2151289376 @default.
- W2044017907 cites W2152473410 @default.
- W2044017907 cites W2154011501 @default.
- W2044017907 cites W2159000080 @default.
- W2044017907 cites W2161969291 @default.
- W2044017907 cites W2162275200 @default.
- W2044017907 cites W2162846286 @default.
- W2044017907 cites W2164735965 @default.
- W2044017907 cites W2170743809 @default.
- W2044017907 cites W2185902968 @default.
- W2044017907 cites W2548197316 @default.
- W2044017907 cites W28766783 @default.
- W2044017907 cites W3120740533 @default.
- W2044017907 doi "https://doi.org/10.1109/tnnls.2014.2382606" @default.
- W2044017907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25608311" @default.
- W2044017907 hasPublicationYear "2015" @default.
- W2044017907 type Work @default.
- W2044017907 sameAs 2044017907 @default.
- W2044017907 citedByCount "17" @default.
- W2044017907 countsByYear W20440179072015 @default.
- W2044017907 countsByYear W20440179072016 @default.
- W2044017907 countsByYear W20440179072017 @default.
- W2044017907 countsByYear W20440179072019 @default.
- W2044017907 countsByYear W20440179072020 @default.
- W2044017907 countsByYear W20440179072021 @default.
- W2044017907 crossrefType "journal-article" @default.
- W2044017907 hasAuthorship W2044017907A5021213636 @default.
- W2044017907 hasAuthorship W2044017907A5035853332 @default.
- W2044017907 hasAuthorship W2044017907A5089040739 @default.
- W2044017907 hasBestOaLocation W20440179072 @default.
- W2044017907 hasConcept C105795698 @default.
- W2044017907 hasConcept C11413529 @default.
- W2044017907 hasConcept C116834253 @default.
- W2044017907 hasConcept C119857082 @default.
- W2044017907 hasConcept C120174047 @default.
- W2044017907 hasConcept C124101348 @default.
- W2044017907 hasConcept C134306372 @default.
- W2044017907 hasConcept C153180895 @default.
- W2044017907 hasConcept C154945302 @default.
- W2044017907 hasConcept C160920958 @default.
- W2044017907 hasConcept C177148314 @default.
- W2044017907 hasConcept C177264268 @default.
- W2044017907 hasConcept C185429906 @default.
- W2044017907 hasConcept C197855036 @default.
- W2044017907 hasConcept C199360897 @default.
- W2044017907 hasConcept C33923547 @default.
- W2044017907 hasConcept C41008148 @default.
- W2044017907 hasConcept C48372109 @default.
- W2044017907 hasConcept C58041806 @default.
- W2044017907 hasConcept C58489278 @default.
- W2044017907 hasConcept C59822182 @default.
- W2044017907 hasConcept C86803240 @default.