Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044088520> ?p ?o ?g. }
- W2044088520 abstract "Abstract Background A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC 50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. Results We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC 50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC 50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Conclusion Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed." @default.
- W2044088520 created "2016-06-24" @default.
- W2044088520 creator A5046887712 @default.
- W2044088520 creator A5050421391 @default.
- W2044088520 creator A5061423503 @default.
- W2044088520 creator A5063155558 @default.
- W2044088520 creator A5072066260 @default.
- W2044088520 date "2008-10-03" @default.
- W2044088520 modified "2023-10-17" @default.
- W2044088520 title "Classification of drug molecules considering their IC50 values using mixed-integer linear programming based hyper-boxes method" @default.
- W2044088520 cites W1504991194 @default.
- W2044088520 cites W1545231783 @default.
- W2044088520 cites W1547036528 @default.
- W2044088520 cites W1567427264 @default.
- W2044088520 cites W1972266664 @default.
- W2044088520 cites W1981587603 @default.
- W2044088520 cites W1998668311 @default.
- W2044088520 cites W2003308834 @default.
- W2044088520 cites W2013350002 @default.
- W2044088520 cites W2015160568 @default.
- W2044088520 cites W2022331577 @default.
- W2044088520 cites W2025264200 @default.
- W2044088520 cites W2032245355 @default.
- W2044088520 cites W2034249126 @default.
- W2044088520 cites W2045138418 @default.
- W2044088520 cites W2047619977 @default.
- W2044088520 cites W2052323648 @default.
- W2044088520 cites W2054389674 @default.
- W2044088520 cites W2063060349 @default.
- W2044088520 cites W2071551353 @default.
- W2044088520 cites W2077582053 @default.
- W2044088520 cites W2078240823 @default.
- W2044088520 cites W2093109772 @default.
- W2044088520 cites W2133093451 @default.
- W2044088520 cites W2135001991 @default.
- W2044088520 cites W2163572677 @default.
- W2044088520 cites W2950942577 @default.
- W2044088520 doi "https://doi.org/10.1186/1471-2105-9-411" @default.
- W2044088520 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2572625" @default.
- W2044088520 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18834515" @default.
- W2044088520 hasPublicationYear "2008" @default.
- W2044088520 type Work @default.
- W2044088520 sameAs 2044088520 @default.
- W2044088520 citedByCount "25" @default.
- W2044088520 countsByYear W20440885202012 @default.
- W2044088520 countsByYear W20440885202013 @default.
- W2044088520 countsByYear W20440885202014 @default.
- W2044088520 countsByYear W20440885202015 @default.
- W2044088520 countsByYear W20440885202016 @default.
- W2044088520 countsByYear W20440885202018 @default.
- W2044088520 countsByYear W20440885202019 @default.
- W2044088520 countsByYear W20440885202021 @default.
- W2044088520 countsByYear W20440885202022 @default.
- W2044088520 crossrefType "journal-article" @default.
- W2044088520 hasAuthorship W2044088520A5046887712 @default.
- W2044088520 hasAuthorship W2044088520A5050421391 @default.
- W2044088520 hasAuthorship W2044088520A5061423503 @default.
- W2044088520 hasAuthorship W2044088520A5063155558 @default.
- W2044088520 hasAuthorship W2044088520A5072066260 @default.
- W2044088520 hasBestOaLocation W20440885201 @default.
- W2044088520 hasConcept C104317684 @default.
- W2044088520 hasConcept C107673813 @default.
- W2044088520 hasConcept C11413529 @default.
- W2044088520 hasConcept C119857082 @default.
- W2044088520 hasConcept C12267149 @default.
- W2044088520 hasConcept C124101348 @default.
- W2044088520 hasConcept C153180895 @default.
- W2044088520 hasConcept C154945302 @default.
- W2044088520 hasConcept C164126121 @default.
- W2044088520 hasConcept C164923092 @default.
- W2044088520 hasConcept C185592680 @default.
- W2044088520 hasConcept C207201462 @default.
- W2044088520 hasConcept C22354355 @default.
- W2044088520 hasConcept C2781320022 @default.
- W2044088520 hasConcept C41008148 @default.
- W2044088520 hasConcept C52001869 @default.
- W2044088520 hasConcept C55493867 @default.
- W2044088520 hasConcept C56086750 @default.
- W2044088520 hasConcept C60644358 @default.
- W2044088520 hasConcept C70721500 @default.
- W2044088520 hasConcept C74187038 @default.
- W2044088520 hasConcept C86803240 @default.
- W2044088520 hasConceptScore W2044088520C104317684 @default.
- W2044088520 hasConceptScore W2044088520C107673813 @default.
- W2044088520 hasConceptScore W2044088520C11413529 @default.
- W2044088520 hasConceptScore W2044088520C119857082 @default.
- W2044088520 hasConceptScore W2044088520C12267149 @default.
- W2044088520 hasConceptScore W2044088520C124101348 @default.
- W2044088520 hasConceptScore W2044088520C153180895 @default.
- W2044088520 hasConceptScore W2044088520C154945302 @default.
- W2044088520 hasConceptScore W2044088520C164126121 @default.
- W2044088520 hasConceptScore W2044088520C164923092 @default.
- W2044088520 hasConceptScore W2044088520C185592680 @default.
- W2044088520 hasConceptScore W2044088520C207201462 @default.
- W2044088520 hasConceptScore W2044088520C22354355 @default.
- W2044088520 hasConceptScore W2044088520C2781320022 @default.
- W2044088520 hasConceptScore W2044088520C41008148 @default.
- W2044088520 hasConceptScore W2044088520C52001869 @default.
- W2044088520 hasConceptScore W2044088520C55493867 @default.
- W2044088520 hasConceptScore W2044088520C56086750 @default.