Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044233537> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2044233537 endingPage "950" @default.
- W2044233537 startingPage "946" @default.
- W2044233537 abstract "Objectives. To investigate the potential of morphometry and artificial intelligence tools for the discrimination of benign and malignant lower urinary system lesions. Methods. The study group included 50 cases of lithiasis, 61 cases of inflammation, 99 cases of benign prostatic hyperplasia, 5 cases of in situ carcinoma, 71 cases of grade I transitional cell carcinoma of the bladder (TCCB), and 184 cases of grade II and grade III TCCB. Images of voided urine smears stained by the Giemsa technique were analyzed by a custom image analysis system. The analysis gave a data set of features from 45,452 cells. A learning vector quantizer (LVQ)-type neural network (NN) was used to discriminate benign from malignant cells on the basis of the extracted morphometric and textural features. The data from 13,636 randomly selected cells were used as a training set and the data from the remaining 31,816 cells made up the test set. Similarly, in an attempt to discriminate at the patient level, 30% of the cases randomly selected were used to train an LVQ NN and the remaining 329 cases were used for the test. Results. The application of the LVQ NN enabled the correct classification of 95.42% of the benign cells and 86.75% of the malignant cells, giving an overall accuracy rate of 90.63%. At the patient level, the LVQ NN enabled the correct classification of 100% of benign cases and 95.6% of malignant cases, giving an overall accuracy rate of 97.57%. Conclusions. NNs combined with image analysis offer useful information in the discrimination of benign and malignant cells and lesions of the lower urinary system." @default.
- W2044233537 created "2016-06-24" @default.
- W2044233537 creator A5006724063 @default.
- W2044233537 creator A5038771545 @default.
- W2044233537 creator A5040516870 @default.
- W2044233537 creator A5041155369 @default.
- W2044233537 creator A5064718764 @default.
- W2044233537 date "1998-06-01" @default.
- W2044233537 modified "2023-09-27" @default.
- W2044233537 title "Static Cytometry and Neural Networks in the Discrimination of Lower Urinary System Lesions" @default.
- W2044233537 cites W109136494 @default.
- W2044233537 cites W141801035 @default.
- W2044233537 cites W1509559802 @default.
- W2044233537 cites W1529979774 @default.
- W2044233537 cites W1530582330 @default.
- W2044233537 cites W1576891459 @default.
- W2044233537 cites W161785710 @default.
- W2044233537 cites W184362875 @default.
- W2044233537 cites W1990863955 @default.
- W2044233537 cites W2047017261 @default.
- W2044233537 cites W2072859393 @default.
- W2044233537 cites W2090037842 @default.
- W2044233537 cites W2100115174 @default.
- W2044233537 cites W2124776405 @default.
- W2044233537 cites W2336213711 @default.
- W2044233537 cites W2397834702 @default.
- W2044233537 cites W2401063222 @default.
- W2044233537 cites W2402491536 @default.
- W2044233537 cites W2402884103 @default.
- W2044233537 cites W2404383686 @default.
- W2044233537 cites W2406132793 @default.
- W2044233537 cites W2409303527 @default.
- W2044233537 cites W2409536862 @default.
- W2044233537 cites W2412175856 @default.
- W2044233537 cites W2412782236 @default.
- W2044233537 cites W2413852401 @default.
- W2044233537 cites W2415686293 @default.
- W2044233537 cites W2417342445 @default.
- W2044233537 cites W2440511300 @default.
- W2044233537 cites W2466002815 @default.
- W2044233537 cites W2468532437 @default.
- W2044233537 cites W2469171388 @default.
- W2044233537 cites W2962566 @default.
- W2044233537 doi "https://doi.org/10.1016/s0090-4295(98)00024-7" @default.
- W2044233537 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9609631" @default.
- W2044233537 hasPublicationYear "1998" @default.
- W2044233537 type Work @default.
- W2044233537 sameAs 2044233537 @default.
- W2044233537 citedByCount "19" @default.
- W2044233537 countsByYear W20442335372015 @default.
- W2044233537 countsByYear W20442335372016 @default.
- W2044233537 countsByYear W20442335372020 @default.
- W2044233537 countsByYear W20442335372022 @default.
- W2044233537 crossrefType "journal-article" @default.
- W2044233537 hasAuthorship W2044233537A5006724063 @default.
- W2044233537 hasAuthorship W2044233537A5038771545 @default.
- W2044233537 hasAuthorship W2044233537A5040516870 @default.
- W2044233537 hasAuthorship W2044233537A5041155369 @default.
- W2044233537 hasAuthorship W2044233537A5064718764 @default.
- W2044233537 hasConcept C126838900 @default.
- W2044233537 hasConcept C142724271 @default.
- W2044233537 hasConcept C154945302 @default.
- W2044233537 hasConcept C2777562237 @default.
- W2044233537 hasConcept C40567965 @default.
- W2044233537 hasConcept C41008148 @default.
- W2044233537 hasConcept C50644808 @default.
- W2044233537 hasConcept C71924100 @default.
- W2044233537 hasConceptScore W2044233537C126838900 @default.
- W2044233537 hasConceptScore W2044233537C142724271 @default.
- W2044233537 hasConceptScore W2044233537C154945302 @default.
- W2044233537 hasConceptScore W2044233537C2777562237 @default.
- W2044233537 hasConceptScore W2044233537C40567965 @default.
- W2044233537 hasConceptScore W2044233537C41008148 @default.
- W2044233537 hasConceptScore W2044233537C50644808 @default.
- W2044233537 hasConceptScore W2044233537C71924100 @default.
- W2044233537 hasIssue "6" @default.
- W2044233537 hasLocation W20442335371 @default.
- W2044233537 hasLocation W20442335372 @default.
- W2044233537 hasOpenAccess W2044233537 @default.
- W2044233537 hasPrimaryLocation W20442335371 @default.
- W2044233537 hasRelatedWork W2025883075 @default.
- W2044233537 hasRelatedWork W2105867074 @default.
- W2044233537 hasRelatedWork W2151556292 @default.
- W2044233537 hasRelatedWork W2348528394 @default.
- W2044233537 hasRelatedWork W2392892091 @default.
- W2044233537 hasRelatedWork W2431229080 @default.
- W2044233537 hasRelatedWork W2692154213 @default.
- W2044233537 hasRelatedWork W2893268702 @default.
- W2044233537 hasRelatedWork W2996077742 @default.
- W2044233537 hasRelatedWork W4245684711 @default.
- W2044233537 hasVolume "51" @default.
- W2044233537 isParatext "false" @default.
- W2044233537 isRetracted "false" @default.
- W2044233537 magId "2044233537" @default.
- W2044233537 workType "article" @default.