Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044284763> ?p ?o ?g. }
- W2044284763 endingPage "15870" @default.
- W2044284763 startingPage "15851" @default.
- W2044284763 abstract "We present a theory of the electronic structure of GaN/AlN quantum dots (QD's), including built-in strain and electric-field effects. A Green's function technique is developed to calculate the three-dimensional (3D) strain distribution in semiconductor QD structures of arbitrary shape and of wurtzite (hexagonal) crystal symmetry. We derive an analytical expression for the Fourier transform of the QD strain tensor, valid for the case when the elastic constants of the QD and matrix materials are equal. A simple iteration procedure is described, which can treat differences in the elastic constants. An analytical formula is also derived for the Fourier transform of the built-in electrostatic potential, including the strain-induced piezoelectric contribution and a term associated with spontaneous polarization. The QD carrier spectra and wave functions are calculated using a plane-wave expansion method we have developed, and a multiband $mathbf{k}ensuremath{cdot}mathbf{P}$ model. The method used is very efficient, because the strain and built-in electric fields can be included analytically through their Fourier transforms. We consider in detail the case of GaN/AlN QD's in the shape of truncated hexagonal pyramids. We present the calculated 3D strain and electrostatic potential distributions, the carrier spectra, and wave functions in the QD's. Due to the strong built-in electric field, the holes are localized in the wetting layer just below the QD bottom, while electrons are pushed up to the pyramid top. Both also experience an additional lateral confinement due to the built-in field. We examine the influence of several key factors on the calculated confined state energies. Use of a one-band, effective-mass Hamiltonian overestimates the electron confinement energies by ensuremath{sim}100 meV, because of conduction-band nonparabolicity effects. By contrast, a one-band valence Hamiltonian provides good agreement with the calculated multiband ground-state energy. Varying the QD shape has comparatively little effect on the calculated levels, because of the strong lateral built-in electric field. Overall, the transition energies depend most strongly on the assumed built-in electric field. The calculated variation of transition energy with quantum dot size is in good agreement with the available experimental data." @default.
- W2044284763 created "2016-06-24" @default.
- W2044284763 creator A5021429427 @default.
- W2044284763 creator A5030960367 @default.
- W2044284763 date "2000-12-15" @default.
- W2044284763 modified "2023-10-14" @default.
- W2044284763 title "Theory of the electronic structure of GaN/AlN hexagonal quantum dots" @default.
- W2044284763 cites W1965763810 @default.
- W2044284763 cites W1966776911 @default.
- W2044284763 cites W1969721436 @default.
- W2044284763 cites W1971338362 @default.
- W2044284763 cites W1972068212 @default.
- W2044284763 cites W1979021348 @default.
- W2044284763 cites W1980150675 @default.
- W2044284763 cites W1982767291 @default.
- W2044284763 cites W1984911637 @default.
- W2044284763 cites W1987298500 @default.
- W2044284763 cites W1987343220 @default.
- W2044284763 cites W1988200769 @default.
- W2044284763 cites W1988817816 @default.
- W2044284763 cites W2004030291 @default.
- W2044284763 cites W2005824473 @default.
- W2044284763 cites W2011104732 @default.
- W2044284763 cites W2011196592 @default.
- W2044284763 cites W2015405048 @default.
- W2044284763 cites W2015640786 @default.
- W2044284763 cites W2020054082 @default.
- W2044284763 cites W2020482717 @default.
- W2044284763 cites W2022552921 @default.
- W2044284763 cites W2029768816 @default.
- W2044284763 cites W2031425074 @default.
- W2044284763 cites W2034227291 @default.
- W2044284763 cites W2035407496 @default.
- W2044284763 cites W2037048819 @default.
- W2044284763 cites W2039513356 @default.
- W2044284763 cites W2054565578 @default.
- W2044284763 cites W2054625634 @default.
- W2044284763 cites W2055175008 @default.
- W2044284763 cites W2058116398 @default.
- W2044284763 cites W2059051455 @default.
- W2044284763 cites W2061710752 @default.
- W2044284763 cites W2063554081 @default.
- W2044284763 cites W2067681530 @default.
- W2044284763 cites W2067857540 @default.
- W2044284763 cites W2068113056 @default.
- W2044284763 cites W2071816070 @default.
- W2044284763 cites W2076156803 @default.
- W2044284763 cites W2076219320 @default.
- W2044284763 cites W2077969869 @default.
- W2044284763 cites W2079894050 @default.
- W2044284763 cites W2083800067 @default.
- W2044284763 cites W2088535165 @default.
- W2044284763 cites W2089662899 @default.
- W2044284763 cites W2096105657 @default.
- W2044284763 cites W2113488710 @default.
- W2044284763 cites W2127076004 @default.
- W2044284763 cites W2127628584 @default.
- W2044284763 cites W2133351565 @default.
- W2044284763 cites W2170379774 @default.
- W2044284763 cites W2327585061 @default.
- W2044284763 doi "https://doi.org/10.1103/physrevb.62.15851" @default.
- W2044284763 hasPublicationYear "2000" @default.
- W2044284763 type Work @default.
- W2044284763 sameAs 2044284763 @default.
- W2044284763 citedByCount "319" @default.
- W2044284763 countsByYear W20442847632012 @default.
- W2044284763 countsByYear W20442847632013 @default.
- W2044284763 countsByYear W20442847632014 @default.
- W2044284763 countsByYear W20442847632015 @default.
- W2044284763 countsByYear W20442847632016 @default.
- W2044284763 countsByYear W20442847632017 @default.
- W2044284763 countsByYear W20442847632018 @default.
- W2044284763 countsByYear W20442847632019 @default.
- W2044284763 countsByYear W20442847632020 @default.
- W2044284763 countsByYear W20442847632021 @default.
- W2044284763 countsByYear W20442847632022 @default.
- W2044284763 countsByYear W20442847632023 @default.
- W2044284763 crossrefType "journal-article" @default.
- W2044284763 hasAuthorship W2044284763A5021429427 @default.
- W2044284763 hasAuthorship W2044284763A5030960367 @default.
- W2044284763 hasConcept C102519508 @default.
- W2044284763 hasConcept C121332964 @default.
- W2044284763 hasConcept C124657808 @default.
- W2044284763 hasConcept C147120987 @default.
- W2044284763 hasConcept C192562407 @default.
- W2044284763 hasConcept C207114421 @default.
- W2044284763 hasConcept C26873012 @default.
- W2044284763 hasConcept C2781201450 @default.
- W2044284763 hasConcept C3045981 @default.
- W2044284763 hasConcept C60799052 @default.
- W2044284763 hasConcept C62520636 @default.
- W2044284763 hasConceptScore W2044284763C102519508 @default.
- W2044284763 hasConceptScore W2044284763C121332964 @default.
- W2044284763 hasConceptScore W2044284763C124657808 @default.
- W2044284763 hasConceptScore W2044284763C147120987 @default.
- W2044284763 hasConceptScore W2044284763C192562407 @default.
- W2044284763 hasConceptScore W2044284763C207114421 @default.
- W2044284763 hasConceptScore W2044284763C26873012 @default.