Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044326362> ?p ?o ?g. }
- W2044326362 abstract "Abstract Background Current practice is to perform a completion axillary lymph node dissection (ALND) for breast cancer patients with tumor-involved sentinel lymph nodes (SLNs), although fewer than half will have non-sentinel node (NSLN) metastasis. Our goal was to develop new models to quantify the risk of NSLN metastasis in SLN-positive patients and to compare predictive capabilities to another widely used model. Methods We constructed three models to predict NSLN status: recursive partitioning with receiver operating characteristic curves (RP-ROC), boosted Classification and Regression Trees (CART), and multivariate logistic regression (MLR) informed by CART. Data were compiled from a multicenter Northern California and Oregon database of 784 patients who prospectively underwent SLN biopsy and completion ALND. We compared the predictive abilities of our best model and the Memorial Sloan-Kettering Breast Cancer Nomogram (Nomogram) in our dataset and an independent dataset from Northwestern University. Results 285 patients had positive SLNs, of which 213 had known angiolymphatic invasion status and 171 had complete pathologic data including hormone receptor status. 264 (93%) patients had limited SLN disease (micrometastasis, 70%, or isolated tumor cells, 23%). 101 (35%) of all SLN-positive patients had tumor-involved NSLNs. Three variables (tumor size, angiolymphatic invasion, and SLN metastasis size) predicted risk in all our models. RP-ROC and boosted CART stratified patients into four risk levels. MLR informed by CART was most accurate. Using two composite predictors calculated from three variables, MLR informed by CART was more accurate than the Nomogram computed using eight predictors. In our dataset, area under ROC curve (AUC) was 0.83/0.85 for MLR (n = 213/n = 171) and 0.77 for Nomogram (n = 171). When applied to an independent dataset (n = 77), AUC was 0.74 for our model and 0.62 for Nomogram. The composite predictors in our model were the product of angiolymphatic invasion and size of SLN metastasis, and the product of tumor size and square of SLN metastasis size. Conclusion We present a new model developed from a community-based SLN database that uses only three rather than eight variables to achieve higher accuracy than the Nomogram for predicting NSLN status in two different datasets." @default.
- W2044326362 created "2016-06-24" @default.
- W2044326362 creator A5002727073 @default.
- W2044326362 creator A5004187490 @default.
- W2044326362 creator A5011608816 @default.
- W2044326362 creator A5015310988 @default.
- W2044326362 creator A5017044520 @default.
- W2044326362 creator A5029016301 @default.
- W2044326362 creator A5032107481 @default.
- W2044326362 creator A5044506498 @default.
- W2044326362 creator A5052061341 @default.
- W2044326362 creator A5053000742 @default.
- W2044326362 creator A5054190833 @default.
- W2044326362 creator A5068820196 @default.
- W2044326362 creator A5069842914 @default.
- W2044326362 creator A5075644312 @default.
- W2044326362 creator A5079009302 @default.
- W2044326362 creator A5085911513 @default.
- W2044326362 creator A5089470816 @default.
- W2044326362 date "2008-03-04" @default.
- W2044326362 modified "2023-10-17" @default.
- W2044326362 title "New models and online calculator for predicting non-sentinel lymph node status in sentinel lymph node positive breast cancer patients" @default.
- W2044326362 cites W1480376833 @default.
- W2044326362 cites W1492314560 @default.
- W2044326362 cites W1821779286 @default.
- W2044326362 cites W1933587402 @default.
- W2044326362 cites W194928921 @default.
- W2044326362 cites W1964849143 @default.
- W2044326362 cites W1968644810 @default.
- W2044326362 cites W1972009489 @default.
- W2044326362 cites W1980989598 @default.
- W2044326362 cites W1984299088 @default.
- W2044326362 cites W1992577217 @default.
- W2044326362 cites W1992968741 @default.
- W2044326362 cites W1995004996 @default.
- W2044326362 cites W2000325211 @default.
- W2044326362 cites W2002369033 @default.
- W2044326362 cites W2005986027 @default.
- W2044326362 cites W2010732827 @default.
- W2044326362 cites W2010871781 @default.
- W2044326362 cites W2012704834 @default.
- W2044326362 cites W2021464235 @default.
- W2044326362 cites W2028416818 @default.
- W2044326362 cites W2045420532 @default.
- W2044326362 cites W2051582782 @default.
- W2044326362 cites W2055008323 @default.
- W2044326362 cites W2059095773 @default.
- W2044326362 cites W2067688961 @default.
- W2044326362 cites W2068116885 @default.
- W2044326362 cites W2073718962 @default.
- W2044326362 cites W2074139443 @default.
- W2044326362 cites W2078612799 @default.
- W2044326362 cites W2083004296 @default.
- W2044326362 cites W2084660457 @default.
- W2044326362 cites W2089140194 @default.
- W2044326362 cites W2090810549 @default.
- W2044326362 cites W2091390468 @default.
- W2044326362 cites W2104003192 @default.
- W2044326362 cites W2108782463 @default.
- W2044326362 cites W2112516937 @default.
- W2044326362 cites W2115527491 @default.
- W2044326362 cites W2118351873 @default.
- W2044326362 cites W2124728313 @default.
- W2044326362 cites W2127951008 @default.
- W2044326362 cites W2131476017 @default.
- W2044326362 cites W2143559789 @default.
- W2044326362 cites W2148946322 @default.
- W2044326362 cites W2161911084 @default.
- W2044326362 cites W2171388447 @default.
- W2044326362 cites W2171762135 @default.
- W2044326362 cites W2244664074 @default.
- W2044326362 cites W2246084589 @default.
- W2044326362 cites W2328176404 @default.
- W2044326362 cites W2413593854 @default.
- W2044326362 cites W2490800645 @default.
- W2044326362 cites W4252453674 @default.
- W2044326362 doi "https://doi.org/10.1186/1471-2407-8-66" @default.
- W2044326362 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2311316" @default.
- W2044326362 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18315887" @default.
- W2044326362 hasPublicationYear "2008" @default.
- W2044326362 type Work @default.
- W2044326362 sameAs 2044326362 @default.
- W2044326362 citedByCount "233" @default.
- W2044326362 countsByYear W20443263622012 @default.
- W2044326362 countsByYear W20443263622013 @default.
- W2044326362 countsByYear W20443263622014 @default.
- W2044326362 countsByYear W20443263622015 @default.
- W2044326362 countsByYear W20443263622016 @default.
- W2044326362 countsByYear W20443263622017 @default.
- W2044326362 countsByYear W20443263622018 @default.
- W2044326362 countsByYear W20443263622019 @default.
- W2044326362 countsByYear W20443263622020 @default.
- W2044326362 countsByYear W20443263622021 @default.
- W2044326362 countsByYear W20443263622022 @default.
- W2044326362 countsByYear W20443263622023 @default.
- W2044326362 crossrefType "journal-article" @default.
- W2044326362 hasAuthorship W2044326362A5002727073 @default.
- W2044326362 hasAuthorship W2044326362A5004187490 @default.
- W2044326362 hasAuthorship W2044326362A5011608816 @default.
- W2044326362 hasAuthorship W2044326362A5015310988 @default.