Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044395857> ?p ?o ?g. }
- W2044395857 endingPage "153" @default.
- W2044395857 startingPage "135" @default.
- W2044395857 abstract "The permeability of oceanic crust is spatially variable and probably anisotropic as well. Using realistic permeability fields for young oceanic crust, we have performed numerical simulations of finite amplitude, steady and unsteady convective fluid flow in layered and/or anisotropic porous media heated from below to investigate particular patterns of fluid flow and temperature in mid-ocean ridge hydrothermal systems. On the flanks of mid-ocean ridges, permeability measurements in deep-sea boreholes suggest that only the top few hundred meters of oceanic crust is permeable. Given this permeability structure (and assuming some minimum permeability and layer thickness), our models predict that convection occurs in the form of numerous cells with aspect ratios of order unity within this permeable layer. Such convection results in fluid flux and diagenetic reactions within the permeable layer with a negligible effect on heat flow at the seafloor, in agreement with field observations. Estimates of oceanic crust permeability based on hydrothermal veins in ophiolites and measurements in deep-sea boreholes suggest that pillow basalts/lava flows are much more permeable than underlying sheeted dikes. This is particularly true at the ridge crest where voids have not yet collapsed and filled. Given this permeability structure, our study suggest that a small percentage of the fluid entering the ridge crest circulates through the sheeted dikes before exiting the system at high temperatures in very focused discharge zones. In our models, these discharge zones narrow considerably at the interface between the sheeted dikes and the pillow basalts/lava flows. Much of the fluid entering the system, however, never circulates below the pillow basalts/lava flows and exits the seafloor at low temperatures. In general, discharge zones are more focused than recharge zones. These results are consistent with observations of narrow and focused discharge zones in ophiolites and localized high-temperature venting amid widespread low-temperature flow on the ridge crest. The spacing of upflow zones at the surface is strongly controlled by convective flow in the bottom permeable layer. In our models, near-field effects dominate over far-field effects in systems with lateral variations in permeability, and no large-scale flow develops between widely spaced areas of contrasting permeability. The time to steady-state and evolution of convective flow in porous media vary considerably with initial conditions. Our simulations suggest that the time to steady-state is relatively long and that it is possible that hydrothermal convection at the ridge axis never reaches a steady-state flow pattern, in the sense that the variations in the system boundary conditions such as basal heat flux may occur on a time scale less than the response time of the hydrothermal system. It is possible, however, that these systems may be quasi-steady for significant periods of time." @default.
- W2044395857 created "2016-06-24" @default.
- W2044395857 creator A5021067842 @default.
- W2044395857 creator A5024163436 @default.
- W2044395857 creator A5082113063 @default.
- W2044395857 date "1993-04-01" @default.
- W2044395857 modified "2023-10-13" @default.
- W2044395857 title "The relationship between flow and permeability field in seafloor hydrothermal systems" @default.
- W2044395857 cites W1504633835 @default.
- W2044395857 cites W1888057819 @default.
- W2044395857 cites W1968882799 @default.
- W2044395857 cites W1970961082 @default.
- W2044395857 cites W1976165311 @default.
- W2044395857 cites W1976584640 @default.
- W2044395857 cites W1976664390 @default.
- W2044395857 cites W1977067707 @default.
- W2044395857 cites W1978156800 @default.
- W2044395857 cites W1981101560 @default.
- W2044395857 cites W1981453448 @default.
- W2044395857 cites W1981970781 @default.
- W2044395857 cites W1984847446 @default.
- W2044395857 cites W1987982517 @default.
- W2044395857 cites W1990753486 @default.
- W2044395857 cites W1992357382 @default.
- W2044395857 cites W1993648774 @default.
- W2044395857 cites W1993891604 @default.
- W2044395857 cites W2001747122 @default.
- W2044395857 cites W2002555513 @default.
- W2044395857 cites W2002628533 @default.
- W2044395857 cites W2002892563 @default.
- W2044395857 cites W2006063745 @default.
- W2044395857 cites W2007189508 @default.
- W2044395857 cites W2007970519 @default.
- W2044395857 cites W2012281986 @default.
- W2044395857 cites W2013377750 @default.
- W2044395857 cites W2013943493 @default.
- W2044395857 cites W2021651669 @default.
- W2044395857 cites W2023366799 @default.
- W2044395857 cites W2027484077 @default.
- W2044395857 cites W2029946095 @default.
- W2044395857 cites W2039443168 @default.
- W2044395857 cites W2044359830 @default.
- W2044395857 cites W2044368181 @default.
- W2044395857 cites W2044971484 @default.
- W2044395857 cites W2046754847 @default.
- W2044395857 cites W2046869728 @default.
- W2044395857 cites W2048824368 @default.
- W2044395857 cites W2049878764 @default.
- W2044395857 cites W2066685060 @default.
- W2044395857 cites W2067197871 @default.
- W2044395857 cites W2068641796 @default.
- W2044395857 cites W2068736775 @default.
- W2044395857 cites W2078028541 @default.
- W2044395857 cites W2082055159 @default.
- W2044395857 cites W2084758784 @default.
- W2044395857 cites W2087949138 @default.
- W2044395857 cites W2089921628 @default.
- W2044395857 cites W2094906092 @default.
- W2044395857 cites W2096617767 @default.
- W2044395857 cites W2118168812 @default.
- W2044395857 cites W2121950536 @default.
- W2044395857 cites W2128706605 @default.
- W2044395857 cites W2132962251 @default.
- W2044395857 cites W2143045284 @default.
- W2044395857 cites W2146093515 @default.
- W2044395857 cites W2156437513 @default.
- W2044395857 cites W2157317169 @default.
- W2044395857 cites W2158652213 @default.
- W2044395857 cites W2160830159 @default.
- W2044395857 cites W2165885486 @default.
- W2044395857 cites W2166646184 @default.
- W2044395857 cites W2199790635 @default.
- W2044395857 cites W2317550394 @default.
- W2044395857 cites W4236363320 @default.
- W2044395857 cites W4364323502 @default.
- W2044395857 doi "https://doi.org/10.1016/0012-821x(93)90050-j" @default.
- W2044395857 hasPublicationYear "1993" @default.
- W2044395857 type Work @default.
- W2044395857 sameAs 2044395857 @default.
- W2044395857 citedByCount "69" @default.
- W2044395857 countsByYear W20443958572012 @default.
- W2044395857 countsByYear W20443958572013 @default.
- W2044395857 countsByYear W20443958572014 @default.
- W2044395857 countsByYear W20443958572016 @default.
- W2044395857 countsByYear W20443958572017 @default.
- W2044395857 countsByYear W20443958572018 @default.
- W2044395857 countsByYear W20443958572019 @default.
- W2044395857 countsByYear W20443958572020 @default.
- W2044395857 countsByYear W20443958572021 @default.
- W2044395857 countsByYear W20443958572022 @default.
- W2044395857 countsByYear W20443958572023 @default.
- W2044395857 crossrefType "journal-article" @default.
- W2044395857 hasAuthorship W2044395857A5021067842 @default.
- W2044395857 hasAuthorship W2044395857A5024163436 @default.
- W2044395857 hasAuthorship W2044395857A5082113063 @default.
- W2044395857 hasConcept C10899652 @default.
- W2044395857 hasConcept C117485682 @default.
- W2044395857 hasConcept C120882062 @default.