Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044401046> ?p ?o ?g. }
- W2044401046 endingPage "112" @default.
- W2044401046 startingPage "97" @default.
- W2044401046 abstract "The analysis of functional neuroimaging data often involves the simultaneous testing for activation at thousands of voxels, leading to a massive multiple testing problem. This is true whether the data analyzed are time courses observed at each voxel or a collection of summary statistics such as statistical parametric maps (SPMs). It is known that classical multiplicity corrections become strongly conservative in the presence of a massive number of tests. Some more popular approaches for thresholding imaging data, such as the Benjamini-Hochberg step-up procedure for false discovery rate control, tend to lose precision or power when the assumption of independence of the data does not hold. Bayesian approaches to large scale simultaneous inference also often rely on the assumption of independence. We introduce a spatial dependence structure into a Bayesian testing model for the analysis of SPMs. By using SPMs rather than the voxel time courses, much of the computational burden of Bayesian analysis is mitigated. Increased power is demonstrated by using the dependence model to draw inference on a real dataset collected in a fMRI study of cognitive control. The model also is shown to lead to improved identification of neural activation patterns known to be associated with eye movement tasks." @default.
- W2044401046 created "2016-06-24" @default.
- W2044401046 creator A5026999963 @default.
- W2044401046 creator A5030070642 @default.
- W2044401046 creator A5044553321 @default.
- W2044401046 creator A5053927473 @default.
- W2044401046 creator A5084912635 @default.
- W2044401046 date "2014-01-01" @default.
- W2044401046 modified "2023-09-24" @default.
- W2044401046 title "Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging" @default.
- W2044401046 cites W1517555081 @default.
- W2044401046 cites W1536497620 @default.
- W2044401046 cites W1596515083 @default.
- W2044401046 cites W1824047490 @default.
- W2044401046 cites W1969978994 @default.
- W2044401046 cites W1976954310 @default.
- W2044401046 cites W1986003326 @default.
- W2044401046 cites W1990134753 @default.
- W2044401046 cites W1991237518 @default.
- W2044401046 cites W1993034746 @default.
- W2044401046 cites W1994201608 @default.
- W2044401046 cites W1999974018 @default.
- W2044401046 cites W2004014822 @default.
- W2044401046 cites W2006145698 @default.
- W2044401046 cites W2006813089 @default.
- W2044401046 cites W2009795040 @default.
- W2044401046 cites W2010631770 @default.
- W2044401046 cites W2018338408 @default.
- W2044401046 cites W2020999234 @default.
- W2044401046 cites W2031913033 @default.
- W2044401046 cites W2039411949 @default.
- W2044401046 cites W2044634376 @default.
- W2044401046 cites W2045200995 @default.
- W2044401046 cites W2046807932 @default.
- W2044401046 cites W2053609837 @default.
- W2044401046 cites W2056105973 @default.
- W2044401046 cites W2056760934 @default.
- W2044401046 cites W2057565703 @default.
- W2044401046 cites W2071300176 @default.
- W2044401046 cites W2071415508 @default.
- W2044401046 cites W2077515295 @default.
- W2044401046 cites W2077580014 @default.
- W2044401046 cites W2083875149 @default.
- W2044401046 cites W2088272457 @default.
- W2044401046 cites W2093538953 @default.
- W2044401046 cites W2094730477 @default.
- W2044401046 cites W2100632140 @default.
- W2044401046 cites W2103907386 @default.
- W2044401046 cites W2116649573 @default.
- W2044401046 cites W2117140276 @default.
- W2044401046 cites W2125905177 @default.
- W2044401046 cites W2126602481 @default.
- W2044401046 cites W2138266733 @default.
- W2044401046 cites W2138309709 @default.
- W2044401046 cites W2138790588 @default.
- W2044401046 cites W2148071000 @default.
- W2044401046 cites W2155798819 @default.
- W2044401046 cites W2158940042 @default.
- W2044401046 cites W2162888823 @default.
- W2044401046 cites W2163274894 @default.
- W2044401046 cites W2164332535 @default.
- W2044401046 cites W2166624680 @default.
- W2044401046 cites W2169787465 @default.
- W2044401046 cites W3104206536 @default.
- W2044401046 cites W4250518393 @default.
- W2044401046 doi "https://doi.org/10.1016/j.neuroimage.2013.08.024" @default.
- W2044401046 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23981437" @default.
- W2044401046 hasPublicationYear "2014" @default.
- W2044401046 type Work @default.
- W2044401046 sameAs 2044401046 @default.
- W2044401046 citedByCount "19" @default.
- W2044401046 countsByYear W20444010462013 @default.
- W2044401046 countsByYear W20444010462014 @default.
- W2044401046 countsByYear W20444010462015 @default.
- W2044401046 countsByYear W20444010462016 @default.
- W2044401046 countsByYear W20444010462017 @default.
- W2044401046 countsByYear W20444010462018 @default.
- W2044401046 countsByYear W20444010462019 @default.
- W2044401046 countsByYear W20444010462020 @default.
- W2044401046 countsByYear W20444010462022 @default.
- W2044401046 crossrefType "journal-article" @default.
- W2044401046 hasAuthorship W2044401046A5026999963 @default.
- W2044401046 hasAuthorship W2044401046A5030070642 @default.
- W2044401046 hasAuthorship W2044401046A5044553321 @default.
- W2044401046 hasAuthorship W2044401046A5053927473 @default.
- W2044401046 hasAuthorship W2044401046A5084912635 @default.
- W2044401046 hasConcept C101112237 @default.
- W2044401046 hasConcept C104317684 @default.
- W2044401046 hasConcept C105795698 @default.
- W2044401046 hasConcept C107673813 @default.
- W2044401046 hasConcept C115961682 @default.
- W2044401046 hasConcept C117251300 @default.
- W2044401046 hasConcept C119857082 @default.
- W2044401046 hasConcept C126838900 @default.
- W2044401046 hasConcept C134261354 @default.
- W2044401046 hasConcept C143409427 @default.
- W2044401046 hasConcept C153180895 @default.
- W2044401046 hasConcept C154945302 @default.