Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044515094> ?p ?o ?g. }
- W2044515094 endingPage "1416" @default.
- W2044515094 startingPage "1410" @default.
- W2044515094 abstract "In the geosciences, fine-scale detail of geomorphic surfaces, commonly parameterized as roughness, is growing in importance as a source of information for modeling natural phenomena and classifying features of interest. Terrestrial light detection and ranging (LiDAR) scanning (TLS), now well known to geologists, is a natural choice for collecting geospatial data. While many recent studies have investigated methodologies for estimating surface roughness from point clouds, research on the influence of instrumental bias on those point clouds and the resulting roughness estimates is scant. A scale-dependent bias in TLS range measurements could affect the outcome of studies relying on high-resolution surface morphology. Growing numbers of research applications in geomorphology, neotectonics, and other disciplines seek to measure the roughness of surfaces with local topographic variations (referred to as asperities) on the order of a few centimeters or less in size. These asperities may manifest as bed forms or pebbles in a streambed, or wavy textures on fault-slip surfaces. In order to assess the feasibility of applying TLS point cloud data sets to the task of measuring centimeter-scale surface roughness, we evaluated the relationship between roughness values of dimensionally controlled test targets measured with TLS scans and numerical simulations. We measured and simulated instrument rangefinder noise to estimate its influence on surface roughness measurements, which was found to decrease with increasing real surface roughness. The size of the area sampled by a single point measurement (effective radius) was also estimated. The ratio of the effective radius to the radius of surface asperities was found to correlate with the disparity between measured and expected roughness. Rangefinder noise was found to overestimate expected roughness by up to ∼5%, and the smoothing effect of the measurement size disparity was found to underestimate expected roughness by up to 20%. Based on these results, it is evident that TLS point cloud geometry is correlated with instrument parameters, scan range, and the morphology of the real surface. As different geological applications of TLS may call for relative or absolute measurements of roughness at widely different scales, the presence of these biases imposes constraints on choice of instrument and scan network design. A general solution for such measurement biases lies in the development of calibration processes for TLS roughness measurement strategies, for which the results of this study establish a theoretical basis." @default.
- W2044515094 created "2016-06-24" @default.
- W2044515094 creator A5033758160 @default.
- W2044515094 creator A5082496736 @default.
- W2044515094 date "2013-10-01" @default.
- W2044515094 modified "2023-09-24" @default.
- W2044515094 title "On the estimation of geological surface roughness from terrestrial laser scanner point clouds" @default.
- W2044515094 cites W1528037584 @default.
- W2044515094 cites W1967498851 @default.
- W2044515094 cites W1974290564 @default.
- W2044515094 cites W1980779042 @default.
- W2044515094 cites W1981769764 @default.
- W2044515094 cites W2003859782 @default.
- W2044515094 cites W2011892314 @default.
- W2044515094 cites W2021520044 @default.
- W2044515094 cites W2026851553 @default.
- W2044515094 cites W2052796244 @default.
- W2044515094 cites W2058678868 @default.
- W2044515094 cites W2066820988 @default.
- W2044515094 cites W2083164527 @default.
- W2044515094 cites W2089653251 @default.
- W2044515094 cites W2094605604 @default.
- W2044515094 cites W2109107749 @default.
- W2044515094 cites W2115548515 @default.
- W2044515094 cites W2122406204 @default.
- W2044515094 cites W2162380055 @default.
- W2044515094 cites W2335086398 @default.
- W2044515094 doi "https://doi.org/10.1130/ges00918.1" @default.
- W2044515094 hasPublicationYear "2013" @default.
- W2044515094 type Work @default.
- W2044515094 sameAs 2044515094 @default.
- W2044515094 citedByCount "27" @default.
- W2044515094 countsByYear W20445150942016 @default.
- W2044515094 countsByYear W20445150942017 @default.
- W2044515094 countsByYear W20445150942018 @default.
- W2044515094 countsByYear W20445150942019 @default.
- W2044515094 countsByYear W20445150942020 @default.
- W2044515094 countsByYear W20445150942021 @default.
- W2044515094 countsByYear W20445150942022 @default.
- W2044515094 countsByYear W20445150942023 @default.
- W2044515094 crossrefType "journal-article" @default.
- W2044515094 hasAuthorship W2044515094A5033758160 @default.
- W2044515094 hasAuthorship W2044515094A5082496736 @default.
- W2044515094 hasBestOaLocation W20445150941 @default.
- W2044515094 hasConcept C107365816 @default.
- W2044515094 hasConcept C115051666 @default.
- W2044515094 hasConcept C120665830 @default.
- W2044515094 hasConcept C121332964 @default.
- W2044515094 hasConcept C127313418 @default.
- W2044515094 hasConcept C131979681 @default.
- W2044515094 hasConcept C13280743 @default.
- W2044515094 hasConcept C141349535 @default.
- W2044515094 hasConcept C154945302 @default.
- W2044515094 hasConcept C159985019 @default.
- W2044515094 hasConcept C192562407 @default.
- W2044515094 hasConcept C205649164 @default.
- W2044515094 hasConcept C2778755073 @default.
- W2044515094 hasConcept C41008148 @default.
- W2044515094 hasConcept C51399673 @default.
- W2044515094 hasConcept C520434653 @default.
- W2044515094 hasConcept C58640448 @default.
- W2044515094 hasConcept C62649853 @default.
- W2044515094 hasConcept C71039073 @default.
- W2044515094 hasConcept C79261456 @default.
- W2044515094 hasConceptScore W2044515094C107365816 @default.
- W2044515094 hasConceptScore W2044515094C115051666 @default.
- W2044515094 hasConceptScore W2044515094C120665830 @default.
- W2044515094 hasConceptScore W2044515094C121332964 @default.
- W2044515094 hasConceptScore W2044515094C127313418 @default.
- W2044515094 hasConceptScore W2044515094C131979681 @default.
- W2044515094 hasConceptScore W2044515094C13280743 @default.
- W2044515094 hasConceptScore W2044515094C141349535 @default.
- W2044515094 hasConceptScore W2044515094C154945302 @default.
- W2044515094 hasConceptScore W2044515094C159985019 @default.
- W2044515094 hasConceptScore W2044515094C192562407 @default.
- W2044515094 hasConceptScore W2044515094C205649164 @default.
- W2044515094 hasConceptScore W2044515094C2778755073 @default.
- W2044515094 hasConceptScore W2044515094C41008148 @default.
- W2044515094 hasConceptScore W2044515094C51399673 @default.
- W2044515094 hasConceptScore W2044515094C520434653 @default.
- W2044515094 hasConceptScore W2044515094C58640448 @default.
- W2044515094 hasConceptScore W2044515094C62649853 @default.
- W2044515094 hasConceptScore W2044515094C71039073 @default.
- W2044515094 hasConceptScore W2044515094C79261456 @default.
- W2044515094 hasIssue "5" @default.
- W2044515094 hasLocation W20445150941 @default.
- W2044515094 hasOpenAccess W2044515094 @default.
- W2044515094 hasPrimaryLocation W20445150941 @default.
- W2044515094 hasRelatedWork W1966848192 @default.
- W2044515094 hasRelatedWork W2035412928 @default.
- W2044515094 hasRelatedWork W2035468110 @default.
- W2044515094 hasRelatedWork W2141477186 @default.
- W2044515094 hasRelatedWork W2194160504 @default.
- W2044515094 hasRelatedWork W2903786413 @default.
- W2044515094 hasRelatedWork W3080305507 @default.
- W2044515094 hasRelatedWork W3175508674 @default.
- W2044515094 hasRelatedWork W4366775409 @default.
- W2044515094 hasRelatedWork W51427204 @default.