Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044562203> ?p ?o ?g. }
- W2044562203 endingPage "R160" @default.
- W2044562203 startingPage "R123" @default.
- W2044562203 abstract "We review work on In2O3:Sn films prepared by reactive e-beam evaporation of In2O3 with up to 9 mol % SnO2 onto heated glass. These films have excellent spectrally selective properties when the deposition rate is ∼0.2 nm/s, the substrate temperature is ≳150 °C, and the oxygen pressure is ∼5×10−4 Torr. Optimized coatings have crystallite dimensions ≳50 nm and a C-type rare-earth oxide structure. We cover electromagnetic properties as recorded by spectrophotometry in the 0.2–50-μm range, by X-band microwave reflectance, and by dc electrical measurements. Hall-effect data are included. An increase of the Sn content is shown to have several important effects: the semiconductor band gap is shifted towards the ultraviolet, the luminous transmittance remains high, the infrared reflectance increases to a high value beyond a certain wavelength which shifts towards the visible, phonon-induced infrared absorption bands vanish, the microwave reflectance goes up, and the dc resisitivity drops to ∼2×10−4 Ω cm. The corresponding mobility is ∼30 cm2/V s. The complex dielectric function ε is reported. These data were obtained from carefully selected combinations of spectrophotometric transmittance and reflectance data. It is found that ε can be reconciled with the Drude theory only by assuming a strongly frequency-dependent relaxation energy between the plasma energy and the band gap. We review a recently formulated quantitative theoretical model for the optical properties which explicitly includes the additive contributions to ε from valence electrons, free electrons, and phonons. The theory embodies an effective-mass model for n-doped semiconductors well above the Mott critical density. Because of the high doping, the Sn impurities are singly ionized and the associated electrons occupy the bottom of the conduction band in the form of an electron gas. The Sn ions behave approximately as point scatterers, which is consistent with pseudopotential arguments. Screening of the ions is described by the random phase approximation. This latter theory works well as a consequence of the small effective electron radii. Exchange and correlation in the electron gas are represented by the Hubbard and Singwi–Sjölander schemes. Phonon effects are included by three empirically determined damped Lorentz oscillators. Free-electron properties are found to govern the optical performance in the main spectral range. An analysis of the complex dynamic resistivity (directly related to ε) shows unambiguously that Sn ions are the most important scatterers, although grain-boundary scattering can play some role in the midvisible range. As a result of this analysis one concludes that the optical properties of the best films approach the theoretical limit. Band-gap shifts can be understood as the net result of two competing mechanisms: a widening due to the Burstein–Moss effect, and a narrowing due to electron-electron and electron-ion scattering. The transition width—including an Urbach tail—seems to be consistent with these notions. Window applications are treated theoretically from detailed computations of integrated luminous, solar, and thermal properties. It is found that In2O3:Sn films on glass can yield∼78% normal solar transmittance and ∼20% hemispherical thermal emittance. Substrate emission is found to be insignificant. Antireflection with evaporated MgF2 or high-rate sputtered aluminum oxyfluoride can give ∼95% normal luminous transmittance, ∼5% normal luminous reflectance, little perceived color and little increase in emittance. A color purity <1% in normal transmission and <10% in normal reflection is achievable for a daylight illuminant within extended ranges of film thickness." @default.
- W2044562203 created "2016-06-24" @default.
- W2044562203 creator A5032073645 @default.
- W2044562203 creator A5045833801 @default.
- W2044562203 date "1986-12-01" @default.
- W2044562203 modified "2023-10-16" @default.
- W2044562203 title "Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows" @default.
- W2044562203 cites W1504650269 @default.
- W2044562203 cites W1524423256 @default.
- W2044562203 cites W1536143792 @default.
- W2044562203 cites W1582761114 @default.
- W2044562203 cites W1651185876 @default.
- W2044562203 cites W1782859878 @default.
- W2044562203 cites W1964500573 @default.
- W2044562203 cites W1965394473 @default.
- W2044562203 cites W1966569101 @default.
- W2044562203 cites W1967892934 @default.
- W2044562203 cites W1968098042 @default.
- W2044562203 cites W1968585124 @default.
- W2044562203 cites W1969243770 @default.
- W2044562203 cites W1971487886 @default.
- W2044562203 cites W1972111759 @default.
- W2044562203 cites W1973039174 @default.
- W2044562203 cites W1975966627 @default.
- W2044562203 cites W1976913116 @default.
- W2044562203 cites W1976945543 @default.
- W2044562203 cites W1978402689 @default.
- W2044562203 cites W1978482811 @default.
- W2044562203 cites W1979326578 @default.
- W2044562203 cites W1979803402 @default.
- W2044562203 cites W1980200558 @default.
- W2044562203 cites W1980445320 @default.
- W2044562203 cites W1980558583 @default.
- W2044562203 cites W1980651202 @default.
- W2044562203 cites W1981117198 @default.
- W2044562203 cites W1983905205 @default.
- W2044562203 cites W1984198132 @default.
- W2044562203 cites W1985036615 @default.
- W2044562203 cites W1985074480 @default.
- W2044562203 cites W1985365456 @default.
- W2044562203 cites W1986891982 @default.
- W2044562203 cites W1988886757 @default.
- W2044562203 cites W1989843138 @default.
- W2044562203 cites W1994352301 @default.
- W2044562203 cites W1994460884 @default.
- W2044562203 cites W1994680908 @default.
- W2044562203 cites W1995920922 @default.
- W2044562203 cites W1997116233 @default.
- W2044562203 cites W1997703296 @default.
- W2044562203 cites W1998517262 @default.
- W2044562203 cites W1998772457 @default.
- W2044562203 cites W2000509044 @default.
- W2044562203 cites W2000665631 @default.
- W2044562203 cites W2001240092 @default.
- W2044562203 cites W2001498199 @default.
- W2044562203 cites W2001575043 @default.
- W2044562203 cites W2002144371 @default.
- W2044562203 cites W2002302095 @default.
- W2044562203 cites W2002488832 @default.
- W2044562203 cites W2002617138 @default.
- W2044562203 cites W2004534595 @default.
- W2044562203 cites W2004907704 @default.
- W2044562203 cites W2005700652 @default.
- W2044562203 cites W2005867764 @default.
- W2044562203 cites W2006500892 @default.
- W2044562203 cites W2006797291 @default.
- W2044562203 cites W2007055250 @default.
- W2044562203 cites W2007857435 @default.
- W2044562203 cites W2008115251 @default.
- W2044562203 cites W2011361665 @default.
- W2044562203 cites W2011679519 @default.
- W2044562203 cites W2011779738 @default.
- W2044562203 cites W2013268827 @default.
- W2044562203 cites W2013885071 @default.
- W2044562203 cites W2015149548 @default.
- W2044562203 cites W2016159142 @default.
- W2044562203 cites W2016348504 @default.
- W2044562203 cites W2018031355 @default.
- W2044562203 cites W2018850047 @default.
- W2044562203 cites W2019133569 @default.
- W2044562203 cites W2019365089 @default.
- W2044562203 cites W2020475303 @default.
- W2044562203 cites W2023231040 @default.
- W2044562203 cites W2023438542 @default.
- W2044562203 cites W2023446843 @default.
- W2044562203 cites W2023489257 @default.
- W2044562203 cites W2023930336 @default.
- W2044562203 cites W2024706078 @default.
- W2044562203 cites W2026276646 @default.
- W2044562203 cites W2028458045 @default.
- W2044562203 cites W2028549299 @default.
- W2044562203 cites W2029554529 @default.
- W2044562203 cites W2030823904 @default.
- W2044562203 cites W2031175346 @default.
- W2044562203 cites W2031854261 @default.
- W2044562203 cites W2032580232 @default.
- W2044562203 cites W2032989288 @default.
- W2044562203 cites W2033648340 @default.