Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044673896> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2044673896 endingPage "339" @default.
- W2044673896 startingPage "330" @default.
- W2044673896 abstract "Two-phase heat transfer coefficients for internal flows play a critical role in the design and analysis of evaporators and condensers. Previous studies propose empirical relations that combine the effects of nucleate and convective boiling onto the overall heat transfer coefficient. Although these relatively simple empirical relations offer physical insight on the nucleation, boiling and flow processes, they come at the expense of some computational accuracy. In this work, we explored new techniques to determine two-phase heat transfer coefficients for refrigerants R-22, R-134a and R-404a. We used multiple functional forms for the heat transfer coefficients and considered multiple dimensionless parameters as inputs to the algebraic relations. We used genetic algorithms to search the solution space that consists of the input parameters plus the different functional forms, and obtained optimal empirical correlations that cover a wide range of heat transfer regimes. Then, we combined genetic algorithm and artificial neural networks to obtain a more universal correlation. Two versions were developed for each correlation: one that assumes a priori knowledge of the local heat flux and another that does not. Several error metrics were computed for all the correlations developed and compared against correlations from the literature. We conclude that substantial improvements can be achieved in both accuracy and robustness of the correlations by using advanced optimization techniques." @default.
- W2044673896 created "2016-06-24" @default.
- W2044673896 creator A5004617268 @default.
- W2044673896 creator A5026061397 @default.
- W2044673896 creator A5074403902 @default.
- W2044673896 creator A5076440483 @default.
- W2044673896 creator A5086584650 @default.
- W2044673896 creator A5091796579 @default.
- W2044673896 date "2014-03-01" @default.
- W2044673896 modified "2023-10-14" @default.
- W2044673896 title "Genetic optimization of heat transfer correlations for evaporator tube flows" @default.
- W2044673896 cites W1965229818 @default.
- W2044673896 cites W1977596813 @default.
- W2044673896 cites W1980998330 @default.
- W2044673896 cites W1982325094 @default.
- W2044673896 cites W1995926771 @default.
- W2044673896 cites W2018447542 @default.
- W2044673896 cites W2019767644 @default.
- W2044673896 cites W2031349338 @default.
- W2044673896 cites W2042180823 @default.
- W2044673896 cites W2049922433 @default.
- W2044673896 cites W2059484951 @default.
- W2044673896 cites W2065386238 @default.
- W2044673896 cites W2076422580 @default.
- W2044673896 cites W2080549863 @default.
- W2044673896 cites W2100871906 @default.
- W2044673896 cites W2120660956 @default.
- W2044673896 cites W68597267 @default.
- W2044673896 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.011" @default.
- W2044673896 hasPublicationYear "2014" @default.
- W2044673896 type Work @default.
- W2044673896 sameAs 2044673896 @default.
- W2044673896 citedByCount "12" @default.
- W2044673896 countsByYear W20446738962015 @default.
- W2044673896 countsByYear W20446738962016 @default.
- W2044673896 countsByYear W20446738962017 @default.
- W2044673896 countsByYear W20446738962018 @default.
- W2044673896 countsByYear W20446738962019 @default.
- W2044673896 countsByYear W20446738962020 @default.
- W2044673896 countsByYear W20446738962022 @default.
- W2044673896 crossrefType "journal-article" @default.
- W2044673896 hasAuthorship W2044673896A5004617268 @default.
- W2044673896 hasAuthorship W2044673896A5026061397 @default.
- W2044673896 hasAuthorship W2044673896A5074403902 @default.
- W2044673896 hasAuthorship W2044673896A5076440483 @default.
- W2044673896 hasAuthorship W2044673896A5086584650 @default.
- W2044673896 hasAuthorship W2044673896A5091796579 @default.
- W2044673896 hasConcept C107706546 @default.
- W2044673896 hasConcept C121332964 @default.
- W2044673896 hasConcept C197194406 @default.
- W2044673896 hasConcept C199499590 @default.
- W2044673896 hasConcept C29700514 @default.
- W2044673896 hasConcept C41008148 @default.
- W2044673896 hasConcept C50517652 @default.
- W2044673896 hasConcept C97355855 @default.
- W2044673896 hasConceptScore W2044673896C107706546 @default.
- W2044673896 hasConceptScore W2044673896C121332964 @default.
- W2044673896 hasConceptScore W2044673896C197194406 @default.
- W2044673896 hasConceptScore W2044673896C199499590 @default.
- W2044673896 hasConceptScore W2044673896C29700514 @default.
- W2044673896 hasConceptScore W2044673896C41008148 @default.
- W2044673896 hasConceptScore W2044673896C50517652 @default.
- W2044673896 hasConceptScore W2044673896C97355855 @default.
- W2044673896 hasLocation W20446738961 @default.
- W2044673896 hasOpenAccess W2044673896 @default.
- W2044673896 hasPrimaryLocation W20446738961 @default.
- W2044673896 hasRelatedWork W177814506 @default.
- W2044673896 hasRelatedWork W1964241993 @default.
- W2044673896 hasRelatedWork W1973877902 @default.
- W2044673896 hasRelatedWork W2031285021 @default.
- W2044673896 hasRelatedWork W2076248109 @default.
- W2044673896 hasRelatedWork W2211146019 @default.
- W2044673896 hasRelatedWork W2368265997 @default.
- W2044673896 hasRelatedWork W260891785 @default.
- W2044673896 hasRelatedWork W3103379360 @default.
- W2044673896 hasRelatedWork W4200349415 @default.
- W2044673896 hasVolume "70" @default.
- W2044673896 isParatext "false" @default.
- W2044673896 isRetracted "false" @default.
- W2044673896 magId "2044673896" @default.
- W2044673896 workType "article" @default.