Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044674001> ?p ?o ?g. }
- W2044674001 endingPage "37" @default.
- W2044674001 startingPage "26" @default.
- W2044674001 abstract "In this study, we have investigated and clarified the processes occurring during the alteration of SON68 glass – the reference nuclear glass for the waste arising from reprocessing of spent fuel from light water reactors – at 50 °C in Callovo-Oxfordian clay groundwater in presence of magnetite. Magnetite is known to be one of the iron corrosion products expected to be present in the vicinity of glass in geological disposal conditions. The effects of the amount of magnetite relative to the glass surface and the transport of aqueous species during glass alteration were studied. A first series of experiments was focused on the effect of various magnetite amounts by mixing and altering glass and magnetite powders. In a second series of experiments, magnetite was separated from the glass by a diffusive barrier in order to slow down the transport of aqueous species. Glass alteration kinetics were analyzed and solids were characterized by a multiscale approach using Raman Spectroscopy, Scanning and Transmission Electron Microscopy, Energy-Dispersive X-ray and Scanning Transmission X-ray Microscopy coupled with Fe L2,3-edge and C K-edge NEXAFS. It appears that glass alteration increases with the amount of magnetite and that the transport of aqueous species is a key parameter. Several processes have been identified such as (i) the silica sorption on the magnetite surface, (ii) the precipitation of Fe-silicates in the vicinity of the glass (iii) the precipitation of SiO2 on the magnetite surface, (iv) the incorporation of Fe within the alteration layer. Process (iv) was not frequently observed, suggesting local variations in geochemical conditions. Moreover, this process is strongly influenced by the transport of aqueous species as indicated by the morphology and composition of the alteration layers. Indeed, when glass and magnetite are homogeneously mixed, the glass alteration layer consists of a gel enriched in Fe having the same Fe(II)/Fe(III) ratio as in magnetite. When both materials are separated by a diffusive barrier, the glass alteration layer consists of a porous gel (not enriched in iron) in presence of a mixture of Fe-silicates with Fe having the same valence as in magnetite, rare-earth precipitates and phyllosilicates. These results suggest that Fe incorporation within the alteration layer changes depending on the distance and the time required for dissolved Fe originating from the magnetite to reach the glass." @default.
- W2044674001 created "2016-06-24" @default.
- W2044674001 creator A5005587232 @default.
- W2044674001 creator A5009465699 @default.
- W2044674001 creator A5016598150 @default.
- W2044674001 creator A5026718442 @default.
- W2044674001 creator A5029187631 @default.
- W2044674001 creator A5036814496 @default.
- W2044674001 creator A5055331185 @default.
- W2044674001 creator A5072754969 @default.
- W2044674001 creator A5079342615 @default.
- W2044674001 date "2015-07-01" @default.
- W2044674001 modified "2023-09-25" @default.
- W2044674001 title "Reactive transport processes occurring during nuclear glass alteration in presence of magnetite" @default.
- W2044674001 cites W1964126265 @default.
- W2044674001 cites W1965510347 @default.
- W2044674001 cites W1967537029 @default.
- W2044674001 cites W1969014532 @default.
- W2044674001 cites W1973254267 @default.
- W2044674001 cites W1978502121 @default.
- W2044674001 cites W1979725474 @default.
- W2044674001 cites W1981431079 @default.
- W2044674001 cites W1985748262 @default.
- W2044674001 cites W1996645813 @default.
- W2044674001 cites W2005557231 @default.
- W2044674001 cites W2009612284 @default.
- W2044674001 cites W2011165003 @default.
- W2044674001 cites W2017876583 @default.
- W2044674001 cites W2020583710 @default.
- W2044674001 cites W2027157747 @default.
- W2044674001 cites W2027850635 @default.
- W2044674001 cites W2040491300 @default.
- W2044674001 cites W2041299608 @default.
- W2044674001 cites W2042729757 @default.
- W2044674001 cites W2046004406 @default.
- W2044674001 cites W2049209885 @default.
- W2044674001 cites W2052917198 @default.
- W2044674001 cites W2053815900 @default.
- W2044674001 cites W2055813487 @default.
- W2044674001 cites W2063879550 @default.
- W2044674001 cites W2067038771 @default.
- W2044674001 cites W2078743034 @default.
- W2044674001 cites W2082187589 @default.
- W2044674001 cites W2087853358 @default.
- W2044674001 cites W2093322704 @default.
- W2044674001 cites W2100791338 @default.
- W2044674001 cites W2142517349 @default.
- W2044674001 cites W2144843745 @default.
- W2044674001 cites W2154271231 @default.
- W2044674001 cites W2157210492 @default.
- W2044674001 cites W2333472381 @default.
- W2044674001 cites W2906347131 @default.
- W2044674001 doi "https://doi.org/10.1016/j.apgeochem.2015.02.018" @default.
- W2044674001 hasPublicationYear "2015" @default.
- W2044674001 type Work @default.
- W2044674001 sameAs 2044674001 @default.
- W2044674001 citedByCount "19" @default.
- W2044674001 countsByYear W20446740012015 @default.
- W2044674001 countsByYear W20446740012016 @default.
- W2044674001 countsByYear W20446740012017 @default.
- W2044674001 countsByYear W20446740012018 @default.
- W2044674001 countsByYear W20446740012019 @default.
- W2044674001 countsByYear W20446740012020 @default.
- W2044674001 countsByYear W20446740012021 @default.
- W2044674001 countsByYear W20446740012022 @default.
- W2044674001 crossrefType "journal-article" @default.
- W2044674001 hasAuthorship W2044674001A5005587232 @default.
- W2044674001 hasAuthorship W2044674001A5009465699 @default.
- W2044674001 hasAuthorship W2044674001A5016598150 @default.
- W2044674001 hasAuthorship W2044674001A5026718442 @default.
- W2044674001 hasAuthorship W2044674001A5029187631 @default.
- W2044674001 hasAuthorship W2044674001A5036814496 @default.
- W2044674001 hasAuthorship W2044674001A5055331185 @default.
- W2044674001 hasAuthorship W2044674001A5072754969 @default.
- W2044674001 hasAuthorship W2044674001A5079342615 @default.
- W2044674001 hasConcept C107054158 @default.
- W2044674001 hasConcept C107872376 @default.
- W2044674001 hasConcept C113196181 @default.
- W2044674001 hasConcept C121332964 @default.
- W2044674001 hasConcept C127413603 @default.
- W2044674001 hasConcept C147789679 @default.
- W2044674001 hasConcept C153294291 @default.
- W2044674001 hasConcept C159985019 @default.
- W2044674001 hasConcept C184651966 @default.
- W2044674001 hasConcept C185592680 @default.
- W2044674001 hasConcept C191897082 @default.
- W2044674001 hasConcept C192562407 @default.
- W2044674001 hasConcept C199289684 @default.
- W2044674001 hasConcept C26771246 @default.
- W2044674001 hasConcept C2777781897 @default.
- W2044674001 hasConcept C42360764 @default.
- W2044674001 hasConceptScore W2044674001C107054158 @default.
- W2044674001 hasConceptScore W2044674001C107872376 @default.
- W2044674001 hasConceptScore W2044674001C113196181 @default.
- W2044674001 hasConceptScore W2044674001C121332964 @default.
- W2044674001 hasConceptScore W2044674001C127413603 @default.
- W2044674001 hasConceptScore W2044674001C147789679 @default.
- W2044674001 hasConceptScore W2044674001C153294291 @default.