Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044752014> ?p ?o ?g. }
- W2044752014 endingPage "84" @default.
- W2044752014 startingPage "1" @default.
- W2044752014 abstract "It is well established that nucleons in the atomic nucleus can organize their motion, leading to quadrupole deformed shapes of the average field and to rotations of the nucleus as a whole. At an excitation energy of few MeV above the yrast line, rotational bands become very closely spaced in energy. Any single band can be viewed as a collective sequence of related states embedded in a dense background of other (more or less complicated) states, to which it will couple by residual interactions. This coupling leads to stationary states of the system (the compound nucleus) which are complicated mixtures of unperturbed configurations. The rotational degree of freedom is “damped” in these compound states in the sense that the electric quadrupole decay of a single quantum state with angular momentum I will not go to a unique final state with spin I − 2 (as for the unperturbed bands) but will exhibit a spectrum of final states all having spin I − 2. In other words, for each compound nucleus formed in an experiment, the cascade of ∼20 γ-rays, which eventually will cool the system, will find many transitions through which to proceed in the regions where bands mix strongly (damped region) and only few in the region of discrete bands. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei will use each of the “discrete” transitions many more times than the “continuum” transitions. Relatively large and small fluctuations in the recorded coincidence spectrum will ensue. respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the Eγ1 · Eγ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168Yb, as well as by analyzing resolved bands in 168Yb and its neighbors. Consecutive γ-rays emitted from the region of rotational damping spread out more in the Eγ1 · Eγ2 plane than those associated with transitions between members of discrete rotational bands, and are studied most clearly in the central valley (Eγ1 = Eγ2). The fluctuation analysis of the valley is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general terms, and the connection to earlier treatments of one-fold spectra of high level density is established. The statistical assumptions underlying the fluctuation analysis imply the existence of a principal uncertainty, which is examined in detail. In the experimental section, the fluctuation analysis is applied to two-dimensional γ-spectra, the only available data at present with sufficient intensity to warrant a meaningful analysis. Large fluctuations are observed in the ridge structures from the four cases analyzed, showing that only a rather low number (≈ 30) of discrete rotational bands exist. In contrast, only weak fluctuations are found along the central valley, revealing that the spectrum in the valley effectively contains different (of the order of 105) coincidence combinations. This number is considerably larger than what is found assuming that the rotational decay leads to a unique final state, showing that the transition strength through each decay step is spread over many states within a given energy interval, the damping width, and thus providing fairly direct evidence of the rotational damping picture." @default.
- W2044752014 created "2016-06-24" @default.
- W2044752014 creator A5021329884 @default.
- W2044752014 creator A5029005626 @default.
- W2044752014 creator A5042042009 @default.
- W2044752014 creator A5056792865 @default.
- W2044752014 creator A5088135481 @default.
- W2044752014 creator A5089835355 @default.
- W2044752014 creator A5091053898 @default.
- W2044752014 date "1996-04-01" @default.
- W2044752014 modified "2023-10-16" @default.
- W2044752014 title "Fluctuation analysis of rotational spectra" @default.
- W2044752014 cites W1968620236 @default.
- W2044752014 cites W1969554145 @default.
- W2044752014 cites W1970906189 @default.
- W2044752014 cites W1985093235 @default.
- W2044752014 cites W1985600527 @default.
- W2044752014 cites W1987381560 @default.
- W2044752014 cites W1989521291 @default.
- W2044752014 cites W1998266626 @default.
- W2044752014 cites W2001042840 @default.
- W2044752014 cites W2002016752 @default.
- W2044752014 cites W2009365058 @default.
- W2044752014 cites W2013702512 @default.
- W2044752014 cites W2015305795 @default.
- W2044752014 cites W2019851904 @default.
- W2044752014 cites W2021017102 @default.
- W2044752014 cites W2021569369 @default.
- W2044752014 cites W2022825666 @default.
- W2044752014 cites W2027657850 @default.
- W2044752014 cites W2030430391 @default.
- W2044752014 cites W2033865079 @default.
- W2044752014 cites W2038099015 @default.
- W2044752014 cites W2051282148 @default.
- W2044752014 cites W2055783615 @default.
- W2044752014 cites W2056117396 @default.
- W2044752014 cites W2058939338 @default.
- W2044752014 cites W2061169940 @default.
- W2044752014 cites W2064842000 @default.
- W2044752014 cites W2065574392 @default.
- W2044752014 cites W2068057197 @default.
- W2044752014 cites W2068909299 @default.
- W2044752014 cites W2069016461 @default.
- W2044752014 cites W2073850160 @default.
- W2044752014 cites W2090282905 @default.
- W2044752014 cites W2092002747 @default.
- W2044752014 cites W2092122178 @default.
- W2044752014 cites W2094949760 @default.
- W2044752014 cites W2105420680 @default.
- W2044752014 cites W2152717035 @default.
- W2044752014 cites W2266849018 @default.
- W2044752014 cites W2315158016 @default.
- W2044752014 cites W3103959483 @default.
- W2044752014 cites W3105050330 @default.
- W2044752014 doi "https://doi.org/10.1016/0370-1573(95)00060-7" @default.
- W2044752014 hasPublicationYear "1996" @default.
- W2044752014 type Work @default.
- W2044752014 sameAs 2044752014 @default.
- W2044752014 citedByCount "73" @default.
- W2044752014 countsByYear W20447520142013 @default.
- W2044752014 countsByYear W20447520142016 @default.
- W2044752014 countsByYear W20447520142019 @default.
- W2044752014 countsByYear W20447520142021 @default.
- W2044752014 countsByYear W20447520142022 @default.
- W2044752014 countsByYear W20447520142023 @default.
- W2044752014 crossrefType "journal-article" @default.
- W2044752014 hasAuthorship W2044752014A5021329884 @default.
- W2044752014 hasAuthorship W2044752014A5029005626 @default.
- W2044752014 hasAuthorship W2044752014A5042042009 @default.
- W2044752014 hasAuthorship W2044752014A5056792865 @default.
- W2044752014 hasAuthorship W2044752014A5088135481 @default.
- W2044752014 hasAuthorship W2044752014A5089835355 @default.
- W2044752014 hasAuthorship W2044752014A5091053898 @default.
- W2044752014 hasConcept C121332964 @default.
- W2044752014 hasConcept C155675718 @default.
- W2044752014 hasConcept C181500209 @default.
- W2044752014 hasConcept C184779094 @default.
- W2044752014 hasConcept C185592680 @default.
- W2044752014 hasConcept C2778270267 @default.
- W2044752014 hasConcept C2780723820 @default.
- W2044752014 hasConcept C34146451 @default.
- W2044752014 hasConcept C39984356 @default.
- W2044752014 hasConcept C42704618 @default.
- W2044752014 hasConcept C43617362 @default.
- W2044752014 hasConcept C4839761 @default.
- W2044752014 hasConcept C62520636 @default.
- W2044752014 hasConcept C83581075 @default.
- W2044752014 hasConcept C86803240 @default.
- W2044752014 hasConcept C95444343 @default.
- W2044752014 hasConcept C97355855 @default.
- W2044752014 hasConceptScore W2044752014C121332964 @default.
- W2044752014 hasConceptScore W2044752014C155675718 @default.
- W2044752014 hasConceptScore W2044752014C181500209 @default.
- W2044752014 hasConceptScore W2044752014C184779094 @default.
- W2044752014 hasConceptScore W2044752014C185592680 @default.
- W2044752014 hasConceptScore W2044752014C2778270267 @default.
- W2044752014 hasConceptScore W2044752014C2780723820 @default.
- W2044752014 hasConceptScore W2044752014C34146451 @default.