Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044807917> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2044807917 endingPage "491" @default.
- W2044807917 startingPage "478" @default.
- W2044807917 abstract "Exact expressions for the partition function, spin pair correlation function, and susceptibility of the onedimensional isotropic classical Heisenberg model are obtained in zero external field with cyclic boundary conditions. It is shown that the methods used to derive these results enable the partition functions and susceptibilities of finite clusters of interacting classical spins to be evaluated in terms of the $3nensuremath{-}j$ symbols of Wigner. Exact results in one dimension are also obtained for the partition function and susceptibility of a planar classical Heisenberg model. In this model the spin vectors interact via a Heisenberg coupling but each spin vector is restricted to lie in a plane.The anisotropic classical Heisenberg model described by the Hamiltonian $mathcal{H}=ensuremath{-}ensuremath{Sigma}stackrel{}{(mathrm{ij})}2({{J}_{mathrm{ij}}}^{x}{{s}_{i}}^{x}{{s}_{j}}^{x}+{{J}_{mathrm{ij}}}^{y}{{s}_{i}}^{y}{{s}_{j}}^{y}+{{J}_{mathrm{ij}}}^{z}{{s}_{i}}^{z}{{s}_{j}}^{z})ensuremath{-}mHensuremath{Sigma}stackrel{N}{j=1}{{s}_{i}}^{z},$ where ${{s}_{i}}^{x}$, ${{s}_{i}}^{y}$, and ${{s}_{i}}^{z}$ are components of the unit vector ${mathbf{s}}_{i}$, is also considered. A perturbation series for the zero-field free energy of the anisotropic model in one dimension with nearest-neighbor interactions ${{J}_{mathrm{ij}}}^{x}={{J}_{mathrm{ij}}}^{y}=J$ and ${{J}_{mathrm{ij}}}^{z}=ensuremath{gamma}J$ is developed in powers of $ensuremath{gamma}ensuremath{-}1$ using the isotropic model as the unperturbed system. Detailed calculations are performed to third order in $ensuremath{gamma}ensuremath{-}1$. It is found that the perturbation series for the energy per spin breaks down as $Tensuremath{rightarrow}0$. A high-temperature series expansion for the anisotropic model, which is valid for a general interaction potential and lattice, is derived by generalizing the methods developed by Horwitz and Callen for the Ising model. This series is rearranged to give a simplified diagram expansion. Finally, a practical technique for calculating the high-temperature series expansions of the zero-field free energy and susceptibility of the isotropic classical Heisenberg model is presented." @default.
- W2044807917 created "2016-06-24" @default.
- W2044807917 creator A5007555381 @default.
- W2044807917 date "1967-03-10" @default.
- W2044807917 modified "2023-09-30" @default.
- W2044807917 title "Classical Heisenberg Model" @default.
- W2044807917 cites W1973166854 @default.
- W2044807917 cites W1978239653 @default.
- W2044807917 cites W1978962462 @default.
- W2044807917 cites W1979997850 @default.
- W2044807917 cites W1983671115 @default.
- W2044807917 cites W1989006439 @default.
- W2044807917 cites W1994820260 @default.
- W2044807917 cites W1996370295 @default.
- W2044807917 cites W1996606987 @default.
- W2044807917 cites W1997885503 @default.
- W2044807917 cites W2030152465 @default.
- W2044807917 cites W2050604609 @default.
- W2044807917 cites W2057874777 @default.
- W2044807917 cites W2068922923 @default.
- W2044807917 cites W2073349254 @default.
- W2044807917 cites W2087769760 @default.
- W2044807917 cites W2091787800 @default.
- W2044807917 cites W2986271231 @default.
- W2044807917 cites W4230880638 @default.
- W2044807917 doi "https://doi.org/10.1103/physrev.155.478" @default.
- W2044807917 hasPublicationYear "1967" @default.
- W2044807917 type Work @default.
- W2044807917 sameAs 2044807917 @default.
- W2044807917 citedByCount "153" @default.
- W2044807917 countsByYear W20448079172012 @default.
- W2044807917 countsByYear W20448079172013 @default.
- W2044807917 countsByYear W20448079172015 @default.
- W2044807917 countsByYear W20448079172016 @default.
- W2044807917 countsByYear W20448079172017 @default.
- W2044807917 countsByYear W20448079172018 @default.
- W2044807917 countsByYear W20448079172019 @default.
- W2044807917 countsByYear W20448079172020 @default.
- W2044807917 countsByYear W20448079172021 @default.
- W2044807917 countsByYear W20448079172022 @default.
- W2044807917 countsByYear W20448079172023 @default.
- W2044807917 crossrefType "journal-article" @default.
- W2044807917 hasAuthorship W2044807917A5007555381 @default.
- W2044807917 hasConcept C10138342 @default.
- W2044807917 hasConcept C114614502 @default.
- W2044807917 hasConcept C121332964 @default.
- W2044807917 hasConcept C126255220 @default.
- W2044807917 hasConcept C130787639 @default.
- W2044807917 hasConcept C134306372 @default.
- W2044807917 hasConcept C155355069 @default.
- W2044807917 hasConcept C162324750 @default.
- W2044807917 hasConcept C182306322 @default.
- W2044807917 hasConcept C184050105 @default.
- W2044807917 hasConcept C201665358 @default.
- W2044807917 hasConcept C26873012 @default.
- W2044807917 hasConcept C2778870898 @default.
- W2044807917 hasConcept C33923547 @default.
- W2044807917 hasConcept C37914503 @default.
- W2044807917 hasConcept C62520636 @default.
- W2044807917 hasConcept C84316537 @default.
- W2044807917 hasConceptScore W2044807917C10138342 @default.
- W2044807917 hasConceptScore W2044807917C114614502 @default.
- W2044807917 hasConceptScore W2044807917C121332964 @default.
- W2044807917 hasConceptScore W2044807917C126255220 @default.
- W2044807917 hasConceptScore W2044807917C130787639 @default.
- W2044807917 hasConceptScore W2044807917C134306372 @default.
- W2044807917 hasConceptScore W2044807917C155355069 @default.
- W2044807917 hasConceptScore W2044807917C162324750 @default.
- W2044807917 hasConceptScore W2044807917C182306322 @default.
- W2044807917 hasConceptScore W2044807917C184050105 @default.
- W2044807917 hasConceptScore W2044807917C201665358 @default.
- W2044807917 hasConceptScore W2044807917C26873012 @default.
- W2044807917 hasConceptScore W2044807917C2778870898 @default.
- W2044807917 hasConceptScore W2044807917C33923547 @default.
- W2044807917 hasConceptScore W2044807917C37914503 @default.
- W2044807917 hasConceptScore W2044807917C62520636 @default.
- W2044807917 hasConceptScore W2044807917C84316537 @default.
- W2044807917 hasIssue "2" @default.
- W2044807917 hasLocation W20448079171 @default.
- W2044807917 hasOpenAccess W2044807917 @default.
- W2044807917 hasPrimaryLocation W20448079171 @default.
- W2044807917 hasRelatedWork W1967741069 @default.
- W2044807917 hasRelatedWork W2044716801 @default.
- W2044807917 hasRelatedWork W2061390782 @default.
- W2044807917 hasRelatedWork W2072072605 @default.
- W2044807917 hasRelatedWork W2080067990 @default.
- W2044807917 hasRelatedWork W3099663038 @default.
- W2044807917 hasRelatedWork W3102813001 @default.
- W2044807917 hasRelatedWork W3213009223 @default.
- W2044807917 hasRelatedWork W4287392695 @default.
- W2044807917 hasRelatedWork W4291001447 @default.
- W2044807917 hasVolume "155" @default.
- W2044807917 isParatext "false" @default.
- W2044807917 isRetracted "false" @default.
- W2044807917 magId "2044807917" @default.
- W2044807917 workType "article" @default.