Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044928940> ?p ?o ?g. }
- W2044928940 endingPage "7737" @default.
- W2044928940 startingPage "7726" @default.
- W2044928940 abstract "A comparative theoretical study of a bimolecular reaction in aqueous solution and catalyzed by the enzyme catechol O-methyltransferase (COMT) has been carried out by a combination of two hybrid QM/MM techniques: statistical simulation methods and internal energy minimizations. In contrast to previous studies by other workers, we have located and characterized transition structures for the reaction in the enzyme active site, in water and in a vacuum, and our potential of mean force calculations are based upon reaction coordinates obtained from features of the potential energy surfaces in the condensed media, not from the gas phase. The AM1/CHARMM calculated free energy of activation for the reaction of S-adenosyl methionine (SAM) with catecholate catalyzed by COMT is 15 kcal mol-1 lower the AM1/TIP3P free-energy barrier for the reaction of the trimethylsulfonium cation with the catecholate anion in water at 300 K, in agreement with previous estimates. The thermodynamically preferred form of the reactants in the uncatalyzed model reaction in water is a solvent-separated ion pair (SSIP). Conversion of the SSIP into a contact ion pair, with a structure resembling that of the Michaelis complex (MC) for the reaction in the COMT active site, is unfavorable by 7 kcal mol-1, largely due to reorganization of the solvent. We have considered alternative ways to estimate the so-called “cratic” free energy for bringing the reactant species together in the correct orientation for reaction but conclude that direct evaluation of the free energy of association by means of molecular dynamics simulation with a simple standard-state correction is probably the best approach. The latter correction allows for the fact that the size of the unit cell employed with the periodic boundary simulations does not correspond to the standard state concentration of 1 M. Consideration of MC-like species allows a helpful decomposition of the catalytic effect into preorganization and reorganization phases. In the preorganization phase, the substrates are brought together into the MC-like species, either in water or in the enzyme active site. In the reorganization phase, the roles of the enzymic and aqueous environments may be compared directly because reorganization of the substrate is about the same in both cases. Analysis of the electric field along the reaction coordinate demonstrates that in water the TS is destabilized with respect to the MC-like species because the polarity of the solute diminishes and consequently the reaction field is also decreased. In the enzyme, the electric field is mainly a permanent field and consequently there is only a small reorganization of the environment. Therefore, destabilization of the TS is lower than in solution, and the activation barrier is smaller." @default.
- W2044928940 created "2016-06-24" @default.
- W2044928940 creator A5002277303 @default.
- W2044928940 creator A5016719458 @default.
- W2044928940 creator A5030185373 @default.
- W2044928940 creator A5030258542 @default.
- W2044928940 creator A5037807874 @default.
- W2044928940 creator A5081523266 @default.
- W2044928940 creator A5082079166 @default.
- W2044928940 date "2003-05-29" @default.
- W2044928940 modified "2023-10-17" @default.
- W2044928940 title "Theoretical Modeling of Enzyme Catalytic Power: Analysis of “Cratic” and Electrostatic Factors in Catechol <i>O</i>-Methyltransferase" @default.
- W2044928940 cites W133369315 @default.
- W2044928940 cites W1580589502 @default.
- W2044928940 cites W1974667766 @default.
- W2044928940 cites W1976499671 @default.
- W2044928940 cites W1980066100 @default.
- W2044928940 cites W1984357124 @default.
- W2044928940 cites W1985071657 @default.
- W2044928940 cites W1985152916 @default.
- W2044928940 cites W1993177346 @default.
- W2044928940 cites W1993871972 @default.
- W2044928940 cites W2008288225 @default.
- W2044928940 cites W2008786038 @default.
- W2044928940 cites W2017059988 @default.
- W2044928940 cites W2020674921 @default.
- W2044928940 cites W2023556976 @default.
- W2044928940 cites W2026467865 @default.
- W2044928940 cites W2027560952 @default.
- W2044928940 cites W2032601843 @default.
- W2044928940 cites W2039485335 @default.
- W2044928940 cites W2053858804 @default.
- W2044928940 cites W2054167369 @default.
- W2044928940 cites W2054392036 @default.
- W2044928940 cites W2056167405 @default.
- W2044928940 cites W2058834481 @default.
- W2044928940 cites W2064032378 @default.
- W2044928940 cites W2072660673 @default.
- W2044928940 cites W2073623394 @default.
- W2044928940 cites W2078998588 @default.
- W2044928940 cites W2082903593 @default.
- W2044928940 cites W2101936319 @default.
- W2044928940 cites W2107025108 @default.
- W2044928940 cites W2107453974 @default.
- W2044928940 cites W2113875841 @default.
- W2044928940 cites W2127341056 @default.
- W2044928940 cites W2159687093 @default.
- W2044928940 cites W2162166182 @default.
- W2044928940 cites W2167109948 @default.
- W2044928940 cites W2951244738 @default.
- W2044928940 cites W2953282370 @default.
- W2044928940 cites W2953289392 @default.
- W2044928940 cites W3005061964 @default.
- W2044928940 cites W3005378326 @default.
- W2044928940 cites W4237342977 @default.
- W2044928940 cites W4255308549 @default.
- W2044928940 doi "https://doi.org/10.1021/ja0299497" @default.
- W2044928940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12812514" @default.
- W2044928940 hasPublicationYear "2003" @default.
- W2044928940 type Work @default.
- W2044928940 sameAs 2044928940 @default.
- W2044928940 citedByCount "65" @default.
- W2044928940 countsByYear W20449289402012 @default.
- W2044928940 countsByYear W20449289402013 @default.
- W2044928940 countsByYear W20449289402014 @default.
- W2044928940 countsByYear W20449289402015 @default.
- W2044928940 countsByYear W20449289402016 @default.
- W2044928940 countsByYear W20449289402017 @default.
- W2044928940 countsByYear W20449289402018 @default.
- W2044928940 countsByYear W20449289402019 @default.
- W2044928940 countsByYear W20449289402020 @default.
- W2044928940 countsByYear W20449289402021 @default.
- W2044928940 countsByYear W20449289402022 @default.
- W2044928940 crossrefType "journal-article" @default.
- W2044928940 hasAuthorship W2044928940A5002277303 @default.
- W2044928940 hasAuthorship W2044928940A5016719458 @default.
- W2044928940 hasAuthorship W2044928940A5030185373 @default.
- W2044928940 hasAuthorship W2044928940A5030258542 @default.
- W2044928940 hasAuthorship W2044928940A5037807874 @default.
- W2044928940 hasAuthorship W2044928940A5081523266 @default.
- W2044928940 hasAuthorship W2044928940A5082079166 @default.
- W2044928940 hasConcept C104317684 @default.
- W2044928940 hasConcept C145148216 @default.
- W2044928940 hasConcept C147597530 @default.
- W2044928940 hasConcept C147789679 @default.
- W2044928940 hasConcept C161790260 @default.
- W2044928940 hasConcept C175113610 @default.
- W2044928940 hasConcept C175634916 @default.
- W2044928940 hasConcept C178790620 @default.
- W2044928940 hasConcept C180754005 @default.
- W2044928940 hasConcept C184651966 @default.
- W2044928940 hasConcept C185361966 @default.
- W2044928940 hasConcept C18553476 @default.
- W2044928940 hasConcept C185592680 @default.
- W2044928940 hasConcept C2777713698 @default.
- W2044928940 hasConcept C2780471494 @default.
- W2044928940 hasConcept C41183919 @default.
- W2044928940 hasConcept C55493867 @default.