Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044931470> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2044931470 endingPage "886" @default.
- W2044931470 startingPage "873" @default.
- W2044931470 abstract "The k nearest neighbor (k-NN) classifier has been a widely used nonparametric technique in Pattern Recognition, because of its simplicity and good performance. In order to decide the class of a new prototype, the k-NN classifier performs an exhaustive comparison between the prototype to classify and the prototypes in the training set T. However, when T is large, the exhaustive comparison is expensive. For this reason, many fast k-NN classifiers have been developed, some of them are based on a tree structure, which is created during a preprocessing phase using the prototypes in T. Then, in a search phase, the tree is traversed to find the nearest neighbor. The speed up is obtained, while the exploration of some parts of the tree is avoided using pruning rules which are usually based on the triangle inequality. However, in soft sciences as Medicine, Geology, Sociology, etc., the prototypes are usually described by numerical and categorical attributes (mixed data), and sometimes the comparison function for computing the similarity between prototypes does not satisfy metric properties. Therefore, in this work an approximate fast k most similar neighbor classifier, for mixed data and similarity functions that do not satisfy metric properties, based on a tree structure (Tree k-MSN) is proposed. Some experiments with synthetic and real data are presented." @default.
- W2044931470 created "2016-06-24" @default.
- W2044931470 creator A5009754927 @default.
- W2044931470 creator A5022183538 @default.
- W2044931470 creator A5064766543 @default.
- W2044931470 date "2010-03-01" @default.
- W2044931470 modified "2023-09-23" @default.
- W2044931470 title "Fast k most similar neighbor classifier for mixed data (tree k-MSN)" @default.
- W2044931470 cites W1480708938 @default.
- W2044931470 cites W1489753557 @default.
- W2044931470 cites W1493055565 @default.
- W2044931470 cites W1558159560 @default.
- W2044931470 cites W1685341657 @default.
- W2044931470 cites W1983645263 @default.
- W2044931470 cites W2013431381 @default.
- W2044931470 cites W2014946817 @default.
- W2044931470 cites W2031247498 @default.
- W2044931470 cites W2033401591 @default.
- W2044931470 cites W2037201833 @default.
- W2044931470 cites W2069821836 @default.
- W2044931470 cites W2091967195 @default.
- W2044931470 cites W2096635897 @default.
- W2044931470 cites W2104715395 @default.
- W2044931470 cites W2106540986 @default.
- W2044931470 cites W2111284499 @default.
- W2044931470 cites W2117688906 @default.
- W2044931470 cites W2119424847 @default.
- W2044931470 cites W2122111042 @default.
- W2044931470 cites W2122496402 @default.
- W2044931470 cites W2129287653 @default.
- W2044931470 cites W2129430460 @default.
- W2044931470 cites W2129710414 @default.
- W2044931470 cites W2133161125 @default.
- W2044931470 cites W2134624785 @default.
- W2044931470 cites W2135408362 @default.
- W2044931470 cites W2138987634 @default.
- W2044931470 cites W2145427752 @default.
- W2044931470 cites W2155354516 @default.
- W2044931470 cites W2163952039 @default.
- W2044931470 cites W2166165501 @default.
- W2044931470 cites W2166231107 @default.
- W2044931470 cites W2167130990 @default.
- W2044931470 cites W2167277498 @default.
- W2044931470 cites W2427881153 @default.
- W2044931470 cites W3004909842 @default.
- W2044931470 cites W3012615620 @default.
- W2044931470 cites W4242599275 @default.
- W2044931470 doi "https://doi.org/10.1016/j.patcog.2009.08.014" @default.
- W2044931470 hasPublicationYear "2010" @default.
- W2044931470 type Work @default.
- W2044931470 sameAs 2044931470 @default.
- W2044931470 citedByCount "12" @default.
- W2044931470 countsByYear W20449314702012 @default.
- W2044931470 countsByYear W20449314702013 @default.
- W2044931470 countsByYear W20449314702014 @default.
- W2044931470 countsByYear W20449314702015 @default.
- W2044931470 countsByYear W20449314702016 @default.
- W2044931470 countsByYear W20449314702017 @default.
- W2044931470 countsByYear W20449314702019 @default.
- W2044931470 countsByYear W20449314702023 @default.
- W2044931470 crossrefType "journal-article" @default.
- W2044931470 hasAuthorship W2044931470A5009754927 @default.
- W2044931470 hasAuthorship W2044931470A5022183538 @default.
- W2044931470 hasAuthorship W2044931470A5064766543 @default.
- W2044931470 hasConcept C113238511 @default.
- W2044931470 hasConcept C124101348 @default.
- W2044931470 hasConcept C153180895 @default.
- W2044931470 hasConcept C154945302 @default.
- W2044931470 hasConcept C41008148 @default.
- W2044931470 hasConcept C95623464 @default.
- W2044931470 hasConceptScore W2044931470C113238511 @default.
- W2044931470 hasConceptScore W2044931470C124101348 @default.
- W2044931470 hasConceptScore W2044931470C153180895 @default.
- W2044931470 hasConceptScore W2044931470C154945302 @default.
- W2044931470 hasConceptScore W2044931470C41008148 @default.
- W2044931470 hasConceptScore W2044931470C95623464 @default.
- W2044931470 hasIssue "3" @default.
- W2044931470 hasLocation W20449314701 @default.
- W2044931470 hasOpenAccess W2044931470 @default.
- W2044931470 hasPrimaryLocation W20449314701 @default.
- W2044931470 hasRelatedWork W2001652754 @default.
- W2044931470 hasRelatedWork W2022996092 @default.
- W2044931470 hasRelatedWork W2086396635 @default.
- W2044931470 hasRelatedWork W2146076056 @default.
- W2044931470 hasRelatedWork W2151973236 @default.
- W2044931470 hasRelatedWork W2167440101 @default.
- W2044931470 hasRelatedWork W2549006548 @default.
- W2044931470 hasRelatedWork W2921036759 @default.
- W2044931470 hasRelatedWork W4214932115 @default.
- W2044931470 hasRelatedWork W3158004940 @default.
- W2044931470 hasVolume "43" @default.
- W2044931470 isParatext "false" @default.
- W2044931470 isRetracted "false" @default.
- W2044931470 magId "2044931470" @default.
- W2044931470 workType "article" @default.