Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044978252> ?p ?o ?g. }
- W2044978252 endingPage "170" @default.
- W2044978252 startingPage "153" @default.
- W2044978252 abstract "The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission (± 20 Mg ha− 1 or 20%, the greater of the two, for at least 80% of grid cells). A data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional–global extents. A general framework for mapping above ground live forest biomass density (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify contiguous areas (> 0.5 ha) that are relatively homogenous in remote sensing metrics (forest patches). We used this image-derived data with simulated spaceborne LiDAR derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (LVIS) to compute AGB and estimate LiDAR sampling error for forest patches and 100 m, 250 m, 500 m, and 1 km grid cells. At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. First, this data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting. Second, a data fusion approach for estimating AGB using simulated spaceborne LiDAR with SAR and passive optical image combinations reduced forest AGB sampling errors 12%–38% from those where LiDAR is used with SAR or passive optical alone. In absolute terms, sampling errors were reduced from 14–40 Mg ha− 1 to 11–28 Mg ha− 1 across all grid scales and prediction methods, where minimum sampling errors were 11, 15, 18, and 22 Mg ha− 1 for 1 km, 500 m, 250 m, and 100 m grid scales, respectively. Third, spaceborne global scale accuracy requirements were achieved whereby at least 80% of the grid cells at 100 m, 250 m, 500 m, and 1 km grid levels met AGB accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500 m and 250 m grid level, respectively." @default.
- W2044978252 created "2016-06-24" @default.
- W2044978252 creator A5003573167 @default.
- W2044978252 creator A5007268288 @default.
- W2044978252 creator A5017207995 @default.
- W2044978252 creator A5019548493 @default.
- W2044978252 creator A5025183402 @default.
- W2044978252 creator A5032467184 @default.
- W2044978252 creator A5072039495 @default.
- W2044978252 creator A5082044345 @default.
- W2044978252 date "2013-03-01" @default.
- W2044978252 modified "2023-10-16" @default.
- W2044978252 title "Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error" @default.
- W2044978252 cites W1566532634 @default.
- W2044978252 cites W1964759162 @default.
- W2044978252 cites W1978836348 @default.
- W2044978252 cites W1979144473 @default.
- W2044978252 cites W1981263865 @default.
- W2044978252 cites W2000648382 @default.
- W2044978252 cites W2001896714 @default.
- W2044978252 cites W2002181014 @default.
- W2044978252 cites W2014299253 @default.
- W2044978252 cites W2017730203 @default.
- W2044978252 cites W2018130020 @default.
- W2044978252 cites W2019249840 @default.
- W2044978252 cites W2032771339 @default.
- W2044978252 cites W2045505889 @default.
- W2044978252 cites W2046838287 @default.
- W2044978252 cites W2049576871 @default.
- W2044978252 cites W2050401936 @default.
- W2044978252 cites W2053212711 @default.
- W2044978252 cites W2054497277 @default.
- W2044978252 cites W2061240006 @default.
- W2044978252 cites W2064401771 @default.
- W2044978252 cites W2078840559 @default.
- W2044978252 cites W2079883176 @default.
- W2044978252 cites W2087674734 @default.
- W2044978252 cites W2093540905 @default.
- W2044978252 cites W2095614097 @default.
- W2044978252 cites W2097993678 @default.
- W2044978252 cites W2098823605 @default.
- W2044978252 cites W2103818806 @default.
- W2044978252 cites W2104252070 @default.
- W2044978252 cites W2105770001 @default.
- W2044978252 cites W2107469388 @default.
- W2044978252 cites W2112522511 @default.
- W2044978252 cites W2121028877 @default.
- W2044978252 cites W2129650125 @default.
- W2044978252 cites W2132075764 @default.
- W2044978252 cites W2140175581 @default.
- W2044978252 cites W2140278197 @default.
- W2044978252 cites W2140853456 @default.
- W2044978252 cites W2143010534 @default.
- W2044978252 cites W2145167036 @default.
- W2044978252 cites W2151456308 @default.
- W2044978252 cites W2152235379 @default.
- W2044978252 cites W2152634225 @default.
- W2044978252 cites W2160454972 @default.
- W2044978252 cites W2169087452 @default.
- W2044978252 cites W2170329466 @default.
- W2044978252 cites W2272473773 @default.
- W2044978252 cites W2911964244 @default.
- W2044978252 doi "https://doi.org/10.1016/j.rse.2012.11.016" @default.
- W2044978252 hasPublicationYear "2013" @default.
- W2044978252 type Work @default.
- W2044978252 sameAs 2044978252 @default.
- W2044978252 citedByCount "55" @default.
- W2044978252 countsByYear W20449782522013 @default.
- W2044978252 countsByYear W20449782522014 @default.
- W2044978252 countsByYear W20449782522015 @default.
- W2044978252 countsByYear W20449782522016 @default.
- W2044978252 countsByYear W20449782522017 @default.
- W2044978252 countsByYear W20449782522018 @default.
- W2044978252 countsByYear W20449782522019 @default.
- W2044978252 countsByYear W20449782522020 @default.
- W2044978252 countsByYear W20449782522021 @default.
- W2044978252 countsByYear W20449782522022 @default.
- W2044978252 countsByYear W20449782522023 @default.
- W2044978252 crossrefType "journal-article" @default.
- W2044978252 hasAuthorship W2044978252A5003573167 @default.
- W2044978252 hasAuthorship W2044978252A5007268288 @default.
- W2044978252 hasAuthorship W2044978252A5017207995 @default.
- W2044978252 hasAuthorship W2044978252A5019548493 @default.
- W2044978252 hasAuthorship W2044978252A5025183402 @default.
- W2044978252 hasAuthorship W2044978252A5032467184 @default.
- W2044978252 hasAuthorship W2044978252A5072039495 @default.
- W2044978252 hasAuthorship W2044978252A5082044345 @default.
- W2044978252 hasConcept C115051666 @default.
- W2044978252 hasConcept C132943942 @default.
- W2044978252 hasConcept C140779682 @default.
- W2044978252 hasConcept C142724271 @default.
- W2044978252 hasConcept C154945302 @default.
- W2044978252 hasConcept C166957645 @default.
- W2044978252 hasConcept C173163844 @default.
- W2044978252 hasConcept C205649164 @default.
- W2044978252 hasConcept C2776133958 @default.
- W2044978252 hasConcept C33954974 @default.
- W2044978252 hasConcept C39432304 @default.