Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044997673> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2044997673 endingPage "1412" @default.
- W2044997673 startingPage "1399" @default.
- W2044997673 abstract "This article approaches the problem of environment pollution with heavy metals from disposal of industrial wastewaters, namely removal of these metals by means of biosorbents, particularly with Romanian peat (from Poiana Stampei). The study is carried out by simulation using feed-forward and modular neural networks with one or two hidden layers, pursuing the influence of certain operating parameters (metal nature, sorbent dose, pH, temperature, initial concentration of metal ion, contact time) on the amount of metal ions retained on the unit mass of sorbent. In neural network modeling, a consistent data set was used, including five metals: lead, mercury, cadmium, nickel and cobalt, the quantification of the metal nature being done by its electronegativity. Even if based on successive trials, the method of designing neural models was systematically conducted, recording and comparing the errors obtained with different types of neural networks, having various numbers of hidden layers and neurons, number of training epochs, or using various learning methods. The errors with values under 5% make clear the efficiency of the applied method." @default.
- W2044997673 created "2016-06-24" @default.
- W2044997673 creator A5002048588 @default.
- W2044997673 creator A5069043555 @default.
- W2044997673 creator A5082397403 @default.
- W2044997673 date "2013-09-19" @default.
- W2044997673 modified "2023-09-27" @default.
- W2044997673 title "Neural networks-based modeling applied to a process of heavy metals removal from wastewaters" @default.
- W2044997673 cites W103543964 @default.
- W2044997673 cites W191037159 @default.
- W2044997673 cites W1966521812 @default.
- W2044997673 cites W1971745723 @default.
- W2044997673 cites W1973846959 @default.
- W2044997673 cites W1982645111 @default.
- W2044997673 cites W1984803671 @default.
- W2044997673 cites W2007032996 @default.
- W2044997673 cites W2010080818 @default.
- W2044997673 cites W2027846645 @default.
- W2044997673 cites W2060616705 @default.
- W2044997673 cites W2064489300 @default.
- W2044997673 cites W2073891474 @default.
- W2044997673 cites W2079985433 @default.
- W2044997673 cites W2083454591 @default.
- W2044997673 cites W2109417134 @default.
- W2044997673 cites W2109623562 @default.
- W2044997673 cites W2158963982 @default.
- W2044997673 cites W2185327253 @default.
- W2044997673 cites W2887902858 @default.
- W2044997673 doi "https://doi.org/10.1080/10934529.2013.781896" @default.
- W2044997673 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23705616" @default.
- W2044997673 hasPublicationYear "2013" @default.
- W2044997673 type Work @default.
- W2044997673 sameAs 2044997673 @default.
- W2044997673 citedByCount "6" @default.
- W2044997673 countsByYear W20449976732015 @default.
- W2044997673 countsByYear W20449976732016 @default.
- W2044997673 countsByYear W20449976732018 @default.
- W2044997673 countsByYear W20449976732019 @default.
- W2044997673 countsByYear W20449976732020 @default.
- W2044997673 countsByYear W20449976732021 @default.
- W2044997673 crossrefType "journal-article" @default.
- W2044997673 hasAuthorship W2044997673A5002048588 @default.
- W2044997673 hasAuthorship W2044997673A5069043555 @default.
- W2044997673 hasAuthorship W2044997673A5082397403 @default.
- W2044997673 hasConcept C111919701 @default.
- W2044997673 hasConcept C127413603 @default.
- W2044997673 hasConcept C150394285 @default.
- W2044997673 hasConcept C154945302 @default.
- W2044997673 hasConcept C178790620 @default.
- W2044997673 hasConcept C185592680 @default.
- W2044997673 hasConcept C191897082 @default.
- W2044997673 hasConcept C192562407 @default.
- W2044997673 hasConcept C21880701 @default.
- W2044997673 hasConcept C2777899863 @default.
- W2044997673 hasConcept C39432304 @default.
- W2044997673 hasConcept C41008148 @default.
- W2044997673 hasConcept C50644808 @default.
- W2044997673 hasConcept C544657597 @default.
- W2044997673 hasConcept C98045186 @default.
- W2044997673 hasConceptScore W2044997673C111919701 @default.
- W2044997673 hasConceptScore W2044997673C127413603 @default.
- W2044997673 hasConceptScore W2044997673C150394285 @default.
- W2044997673 hasConceptScore W2044997673C154945302 @default.
- W2044997673 hasConceptScore W2044997673C178790620 @default.
- W2044997673 hasConceptScore W2044997673C185592680 @default.
- W2044997673 hasConceptScore W2044997673C191897082 @default.
- W2044997673 hasConceptScore W2044997673C192562407 @default.
- W2044997673 hasConceptScore W2044997673C21880701 @default.
- W2044997673 hasConceptScore W2044997673C2777899863 @default.
- W2044997673 hasConceptScore W2044997673C39432304 @default.
- W2044997673 hasConceptScore W2044997673C41008148 @default.
- W2044997673 hasConceptScore W2044997673C50644808 @default.
- W2044997673 hasConceptScore W2044997673C544657597 @default.
- W2044997673 hasConceptScore W2044997673C98045186 @default.
- W2044997673 hasIssue "11" @default.
- W2044997673 hasLocation W20449976731 @default.
- W2044997673 hasLocation W20449976732 @default.
- W2044997673 hasOpenAccess W2044997673 @default.
- W2044997673 hasPrimaryLocation W20449976731 @default.
- W2044997673 hasRelatedWork W2013857439 @default.
- W2044997673 hasRelatedWork W2027739486 @default.
- W2044997673 hasRelatedWork W2089105515 @default.
- W2044997673 hasRelatedWork W2094938744 @default.
- W2044997673 hasRelatedWork W2748952813 @default.
- W2044997673 hasRelatedWork W2791074524 @default.
- W2044997673 hasRelatedWork W2899084033 @default.
- W2044997673 hasRelatedWork W53606779 @default.
- W2044997673 hasRelatedWork W2165763162 @default.
- W2044997673 hasRelatedWork W89688677 @default.
- W2044997673 hasVolume "48" @default.
- W2044997673 isParatext "false" @default.
- W2044997673 isRetracted "false" @default.
- W2044997673 magId "2044997673" @default.
- W2044997673 workType "article" @default.