Matches in SemOpenAlex for { <https://semopenalex.org/work/W2044999719> ?p ?o ?g. }
- W2044999719 endingPage "1039" @default.
- W2044999719 startingPage "1029" @default.
- W2044999719 abstract "We propose a method for sequential supervised learning that exploits explicit knowledge of short- and long-range dependencies. The architecture consists of a recursive and bi-directional neural network that takes as input a sequence along with an associated interaction graph. The interaction graph models (partial) knowledge about long-range dependency relations. We tested the method on the prediction of protein secondary structure, a task in which relations due to beta-strand pairings and other spatial proximities are known to have a significant effect on the prediction accuracy. In this particular task, interactions can be derived from knowledge of protein contact maps at the residue level. Our results show that prediction accuracy can be significantly boosted by the integration of interaction graphs." @default.
- W2044999719 created "2016-06-24" @default.
- W2044999719 creator A5005816688 @default.
- W2044999719 creator A5016630267 @default.
- W2044999719 creator A5027422071 @default.
- W2044999719 date "2005-10-01" @default.
- W2044999719 modified "2023-09-26" @default.
- W2044999719 title "Learning protein secondary structure from sequential and relational data" @default.
- W2044999719 cites W1529355025 @default.
- W2044999719 cites W1958945228 @default.
- W2044999719 cites W1966849089 @default.
- W2044999719 cites W1982597966 @default.
- W2044999719 cites W1996073320 @default.
- W2044999719 cites W2008708467 @default.
- W2044999719 cites W2009904974 @default.
- W2044999719 cites W2015470526 @default.
- W2044999719 cites W2045777307 @default.
- W2044999719 cites W2046192291 @default.
- W2044999719 cites W2062166748 @default.
- W2044999719 cites W2064675550 @default.
- W2044999719 cites W2091194233 @default.
- W2044999719 cites W2104054098 @default.
- W2044999719 cites W2106116715 @default.
- W2044999719 cites W2107878631 @default.
- W2044999719 cites W2113178668 @default.
- W2044999719 cites W2115003579 @default.
- W2044999719 cites W2119423166 @default.
- W2044999719 cites W2126993576 @default.
- W2044999719 cites W2127827747 @default.
- W2044999719 cites W2130479394 @default.
- W2044999719 cites W2134299061 @default.
- W2044999719 cites W2139582206 @default.
- W2044999719 cites W2140244239 @default.
- W2044999719 cites W2147905080 @default.
- W2044999719 cites W2152064613 @default.
- W2044999719 cites W2153187042 @default.
- W2044999719 cites W2156798505 @default.
- W2044999719 cites W2158714788 @default.
- W2044999719 cites W2165959773 @default.
- W2044999719 cites W2168211076 @default.
- W2044999719 cites W2170471837 @default.
- W2044999719 doi "https://doi.org/10.1016/j.neunet.2005.07.001" @default.
- W2044999719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16182513" @default.
- W2044999719 hasPublicationYear "2005" @default.
- W2044999719 type Work @default.
- W2044999719 sameAs 2044999719 @default.
- W2044999719 citedByCount "38" @default.
- W2044999719 countsByYear W20449997192012 @default.
- W2044999719 countsByYear W20449997192013 @default.
- W2044999719 countsByYear W20449997192014 @default.
- W2044999719 countsByYear W20449997192015 @default.
- W2044999719 countsByYear W20449997192016 @default.
- W2044999719 countsByYear W20449997192017 @default.
- W2044999719 countsByYear W20449997192018 @default.
- W2044999719 countsByYear W20449997192019 @default.
- W2044999719 countsByYear W20449997192020 @default.
- W2044999719 countsByYear W20449997192021 @default.
- W2044999719 crossrefType "journal-article" @default.
- W2044999719 hasAuthorship W2044999719A5005816688 @default.
- W2044999719 hasAuthorship W2044999719A5016630267 @default.
- W2044999719 hasAuthorship W2044999719A5027422071 @default.
- W2044999719 hasConcept C119857082 @default.
- W2044999719 hasConcept C132525143 @default.
- W2044999719 hasConcept C153180895 @default.
- W2044999719 hasConcept C154945302 @default.
- W2044999719 hasConcept C159985019 @default.
- W2044999719 hasConcept C165696696 @default.
- W2044999719 hasConcept C192562407 @default.
- W2044999719 hasConcept C19768560 @default.
- W2044999719 hasConcept C204323151 @default.
- W2044999719 hasConcept C2778112365 @default.
- W2044999719 hasConcept C2987255567 @default.
- W2044999719 hasConcept C38652104 @default.
- W2044999719 hasConcept C41008148 @default.
- W2044999719 hasConcept C50644808 @default.
- W2044999719 hasConcept C54355233 @default.
- W2044999719 hasConcept C80444323 @default.
- W2044999719 hasConcept C86803240 @default.
- W2044999719 hasConceptScore W2044999719C119857082 @default.
- W2044999719 hasConceptScore W2044999719C132525143 @default.
- W2044999719 hasConceptScore W2044999719C153180895 @default.
- W2044999719 hasConceptScore W2044999719C154945302 @default.
- W2044999719 hasConceptScore W2044999719C159985019 @default.
- W2044999719 hasConceptScore W2044999719C165696696 @default.
- W2044999719 hasConceptScore W2044999719C192562407 @default.
- W2044999719 hasConceptScore W2044999719C19768560 @default.
- W2044999719 hasConceptScore W2044999719C204323151 @default.
- W2044999719 hasConceptScore W2044999719C2778112365 @default.
- W2044999719 hasConceptScore W2044999719C2987255567 @default.
- W2044999719 hasConceptScore W2044999719C38652104 @default.
- W2044999719 hasConceptScore W2044999719C41008148 @default.
- W2044999719 hasConceptScore W2044999719C50644808 @default.
- W2044999719 hasConceptScore W2044999719C54355233 @default.
- W2044999719 hasConceptScore W2044999719C80444323 @default.
- W2044999719 hasConceptScore W2044999719C86803240 @default.
- W2044999719 hasIssue "8" @default.
- W2044999719 hasLocation W20449997191 @default.
- W2044999719 hasLocation W20449997192 @default.