Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045003894> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2045003894 endingPage "145" @default.
- W2045003894 startingPage "145" @default.
- W2045003894 abstract "A theory is presented which describes the propagation of a ring wave on the surface of a flow which moves with some prescribed velocity profile. The problem is formulated in suitable far-field variables (which give the concentric KdV equation for a stationary flow), but allowance is made for the fact that the wavefront is no longer circular. The leading order of this small-amplitude long-wave theory reduces to a generalized Burns condition which is used to determine the shape of the wavefront. This condition is written as [ (h^2+h^{prime 2}int^1_2dz/[F(z, theta)]^2=1, ] where F(z, θ) = -1 + {U(z) − c} (h cos θ − h′ sin θ), U(z) is the velocity profile, c is a parameter and the local characteristic coordinate for the wave is ξ = rh(θ) − t. (The Burns condition is interpreted in terms of the finite part of the integral in order to allow the possibility of a critical layer where F(zc, θ) = 0, 0 < zc < 1.) The wavefront is represented by r = constant /h(θ). A model boundary-layer profile, which gives rise to a critical-layer solution, is chosen for U(z). The role of this critical-layer solution, and the general question of upstream propagation, is then examined by constructing a wavefront which is continuous from the downstream to the upstream side. Solutions are presented which demonstrate that a critical layer never appears and so upstream propagation is necessary. These solutions (for various values of surface speed and boundary-layer thickness) are one branch of what we might term the singular solution of the differential equation for h(θ). The other branch corresponds to a solution which has a critical layer for all θ, which would seem to be unphysical since this solution is not an outward propagating ring wave.At the next order we obtain the equation which describes the dominant contribution to the surface wave, in this approximation. The equation is a new form of Korteweg–de Vries equation; the novel feature is the dependence on the polar angle, θ. This equation is not analysed in any detail here, but the connection with plane waves over a shear flow, and with concentric waves in the absence of shear, is made." @default.
- W2045003894 created "2016-06-24" @default.
- W2045003894 creator A5016815633 @default.
- W2045003894 date "1990-06-01" @default.
- W2045003894 modified "2023-09-27" @default.
- W2045003894 title "Ring waves on the surface of shear flows: a linear and nonlinear theory" @default.
- W2045003894 cites W1985392294 @default.
- W2045003894 cites W2032173862 @default.
- W2045003894 cites W2033509216 @default.
- W2045003894 cites W2048020918 @default.
- W2045003894 cites W2050920042 @default.
- W2045003894 cites W2066493483 @default.
- W2045003894 cites W2067972299 @default.
- W2045003894 cites W2105103650 @default.
- W2045003894 cites W2121261660 @default.
- W2045003894 cites W2148248502 @default.
- W2045003894 cites W2162307789 @default.
- W2045003894 cites W22232138 @default.
- W2045003894 doi "https://doi.org/10.1017/s0022112090002592" @default.
- W2045003894 hasPublicationYear "1990" @default.
- W2045003894 type Work @default.
- W2045003894 sameAs 2045003894 @default.
- W2045003894 citedByCount "21" @default.
- W2045003894 countsByYear W20450038942012 @default.
- W2045003894 countsByYear W20450038942016 @default.
- W2045003894 countsByYear W20450038942017 @default.
- W2045003894 countsByYear W20450038942018 @default.
- W2045003894 countsByYear W20450038942019 @default.
- W2045003894 countsByYear W20450038942020 @default.
- W2045003894 countsByYear W20450038942021 @default.
- W2045003894 countsByYear W20450038942023 @default.
- W2045003894 crossrefType "journal-article" @default.
- W2045003894 hasAuthorship W2045003894A5016815633 @default.
- W2045003894 hasConcept C111603439 @default.
- W2045003894 hasConcept C120665830 @default.
- W2045003894 hasConcept C121332964 @default.
- W2045003894 hasConcept C134306372 @default.
- W2045003894 hasConcept C165699331 @default.
- W2045003894 hasConcept C33923547 @default.
- W2045003894 hasConcept C38349280 @default.
- W2045003894 hasConcept C57879066 @default.
- W2045003894 hasConcept C74650414 @default.
- W2045003894 hasConceptScore W2045003894C111603439 @default.
- W2045003894 hasConceptScore W2045003894C120665830 @default.
- W2045003894 hasConceptScore W2045003894C121332964 @default.
- W2045003894 hasConceptScore W2045003894C134306372 @default.
- W2045003894 hasConceptScore W2045003894C165699331 @default.
- W2045003894 hasConceptScore W2045003894C33923547 @default.
- W2045003894 hasConceptScore W2045003894C38349280 @default.
- W2045003894 hasConceptScore W2045003894C57879066 @default.
- W2045003894 hasConceptScore W2045003894C74650414 @default.
- W2045003894 hasIssue "-1" @default.
- W2045003894 hasLocation W20450038941 @default.
- W2045003894 hasOpenAccess W2045003894 @default.
- W2045003894 hasPrimaryLocation W20450038941 @default.
- W2045003894 hasRelatedWork W1979846157 @default.
- W2045003894 hasRelatedWork W1993697421 @default.
- W2045003894 hasRelatedWork W1999624973 @default.
- W2045003894 hasRelatedWork W2008597485 @default.
- W2045003894 hasRelatedWork W2034167671 @default.
- W2045003894 hasRelatedWork W2066120742 @default.
- W2045003894 hasRelatedWork W2094350908 @default.
- W2045003894 hasRelatedWork W2278129058 @default.
- W2045003894 hasRelatedWork W2316608294 @default.
- W2045003894 hasRelatedWork W3118977201 @default.
- W2045003894 hasVolume "215" @default.
- W2045003894 isParatext "false" @default.
- W2045003894 isRetracted "false" @default.
- W2045003894 magId "2045003894" @default.
- W2045003894 workType "article" @default.