Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045010625> ?p ?o ?g. }
- W2045010625 endingPage "69" @default.
- W2045010625 startingPage "39" @default.
- W2045010625 abstract "A variety of iterative methods for the solution of initial- and/or boundary-value problems in ordinary and partial differential equations is presented. These iterative procedures provide the solution or an approximation to it as a sequence of iterates. For initial-value problems, it is shown that these iterative procedures can be written in either an integral or differential form. The integral form is governed by a Volterra integral equation, whereas the differential one can be obtained from the Volterra representation by simply differentiation. It is also shown that integration by parts, variation of parameters, adjoint operators, Green’s functions and the method of weighted residuals provide the same Volterra integral equation and that this equation, in turn, can be written as that of the variational iteration method. It is, therefore, shown that the variational iteration method is nothing else by the Picard–Lindelof theory for initial-value problems in ordinary differential equations and Banach’s fixed-point theory for initial-value problems in partial differential equations, and the convergence of these iterative procedures is ensured provided that the resulting mapping is Lipschitz continuous and contractive. It is also shown that some of the iterative methods for initial-value problems presented here are special cases of the Bellman–Kalaba quasilinearization technique provided that the nonlinearities are differentiable with respect to the dependent variable and its derivatives, but such a condition is not required by the techniques presented in this paper. For boundary-value problems, it is shown that one may use the iterative procedures developed for initial-value problems but the resulting iterates may not satisfy the boundary conditions, and two new iterative methods governed by Fredholm integral equations are proposed. It is shown that the resulting iterates satisfy the boundary conditions if the first one does so. The iterative integral formulation presented here is applied to ten nonlinear oscillators with odd nonlinearities and it is shown that its results coincide with those of (differential) two- and three-level iterative techniques, harmonic balance procedures and standard and modified Linstedt–Poincaré techniques. The method is also applied to two boundary-value problems." @default.
- W2045010625 created "2016-06-24" @default.
- W2045010625 creator A5039785053 @default.
- W2045010625 date "2008-05-01" @default.
- W2045010625 modified "2023-10-14" @default.
- W2045010625 title "On the variational iteration method and other iterative techniques for nonlinear differential equations" @default.
- W2045010625 cites W114984406 @default.
- W2045010625 cites W1494153853 @default.
- W2045010625 cites W1605022176 @default.
- W2045010625 cites W1646660925 @default.
- W2045010625 cites W187465303 @default.
- W2045010625 cites W1965592597 @default.
- W2045010625 cites W1966652527 @default.
- W2045010625 cites W1967165841 @default.
- W2045010625 cites W1967328605 @default.
- W2045010625 cites W1969202999 @default.
- W2045010625 cites W1970467391 @default.
- W2045010625 cites W1976341105 @default.
- W2045010625 cites W1984853762 @default.
- W2045010625 cites W1988033854 @default.
- W2045010625 cites W1989585295 @default.
- W2045010625 cites W1995462924 @default.
- W2045010625 cites W1996951748 @default.
- W2045010625 cites W1998472010 @default.
- W2045010625 cites W2000224663 @default.
- W2045010625 cites W2002581715 @default.
- W2045010625 cites W2003806194 @default.
- W2045010625 cites W2006420284 @default.
- W2045010625 cites W2008673347 @default.
- W2045010625 cites W2009690972 @default.
- W2045010625 cites W2011910223 @default.
- W2045010625 cites W2015452267 @default.
- W2045010625 cites W2022945174 @default.
- W2045010625 cites W2023759956 @default.
- W2045010625 cites W2024459096 @default.
- W2045010625 cites W2027034393 @default.
- W2045010625 cites W2028731053 @default.
- W2045010625 cites W2028803141 @default.
- W2045010625 cites W2029727267 @default.
- W2045010625 cites W2035511667 @default.
- W2045010625 cites W2036675433 @default.
- W2045010625 cites W2040498978 @default.
- W2045010625 cites W2047559510 @default.
- W2045010625 cites W2047787595 @default.
- W2045010625 cites W2054016546 @default.
- W2045010625 cites W2055378830 @default.
- W2045010625 cites W2056009272 @default.
- W2045010625 cites W2058283342 @default.
- W2045010625 cites W2060566375 @default.
- W2045010625 cites W2064210666 @default.
- W2045010625 cites W2065733349 @default.
- W2045010625 cites W2068464707 @default.
- W2045010625 cites W2069821908 @default.
- W2045010625 cites W2070886181 @default.
- W2045010625 cites W2073607859 @default.
- W2045010625 cites W2073806305 @default.
- W2045010625 cites W2074698098 @default.
- W2045010625 cites W2078182196 @default.
- W2045010625 cites W2078737943 @default.
- W2045010625 cites W2081747901 @default.
- W2045010625 cites W2084520891 @default.
- W2045010625 cites W2091751672 @default.
- W2045010625 cites W2092355402 @default.
- W2045010625 cites W2093228677 @default.
- W2045010625 cites W2093873305 @default.
- W2045010625 cites W2095271983 @default.
- W2045010625 cites W2114363652 @default.
- W2045010625 cites W2116253702 @default.
- W2045010625 cites W2124883854 @default.
- W2045010625 cites W2152022364 @default.
- W2045010625 cites W2154017369 @default.
- W2045010625 cites W2154763189 @default.
- W2045010625 cites W2165917005 @default.
- W2045010625 cites W2170606157 @default.
- W2045010625 cites W3106296080 @default.
- W2045010625 cites W4251034181 @default.
- W2045010625 doi "https://doi.org/10.1016/j.amc.2007.09.024" @default.
- W2045010625 hasPublicationYear "2008" @default.
- W2045010625 type Work @default.
- W2045010625 sameAs 2045010625 @default.
- W2045010625 citedByCount "90" @default.
- W2045010625 countsByYear W20450106252012 @default.
- W2045010625 countsByYear W20450106252013 @default.
- W2045010625 countsByYear W20450106252014 @default.
- W2045010625 countsByYear W20450106252015 @default.
- W2045010625 countsByYear W20450106252016 @default.
- W2045010625 countsByYear W20450106252017 @default.
- W2045010625 countsByYear W20450106252018 @default.
- W2045010625 countsByYear W20450106252019 @default.
- W2045010625 countsByYear W20450106252020 @default.
- W2045010625 countsByYear W20450106252022 @default.
- W2045010625 countsByYear W20450106252023 @default.
- W2045010625 crossrefType "journal-article" @default.
- W2045010625 hasAuthorship W2045010625A5039785053 @default.
- W2045010625 hasConcept C126255220 @default.
- W2045010625 hasConcept C134306372 @default.
- W2045010625 hasConcept C140479938 @default.
- W2045010625 hasConcept C159694833 @default.