Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045103143> ?p ?o ?g. }
- W2045103143 endingPage "45" @default.
- W2045103143 startingPage "26" @default.
- W2045103143 abstract "The healthcare environment is generally perceived as being information rich yet knowledge poor. The healthcare industry collects huge amounts of healthcare data which, unfortunately, are not “mined” to discover hidden information. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. The information technology may provide alternative approaches to Osteoporosis disease diagnosis. This study examines the potential use of classification techniques on a massive volume of healthcare data, particularly in prediction of patients that may have Osteoporosis Disease (OD) through its risk factors. The paper proposes to develop a dynamic rough sets solution approach in order to generate dynamic reduced subsets of features associated with a classification model using Random Forest (RF) decision tree to identify the osteoporosis cases. There has been no research in using the afore-mentioned algorithm for Osteoporosis patients’ prediction. The reduction of the attributes consists of enumerating dynamically the optimal subsets of the most relevant attributes by reducing the degree of complexity. An intelligent decision support system is developed for this purpose. The study population consisted of 2845 adults. The performance of the proposed model is analyzed and evaluated based on a set of benchmark techniques applied in this classification problem." @default.
- W2045103143 created "2016-06-24" @default.
- W2045103143 creator A5013041648 @default.
- W2045103143 creator A5047086484 @default.
- W2045103143 creator A5062757097 @default.
- W2045103143 creator A5075617992 @default.
- W2045103143 date "2012-01-01" @default.
- W2045103143 modified "2023-10-04" @default.
- W2045103143 title "Intelligent Decision Support System for Osteoporosis Prediction" @default.
- W2045103143 cites W1525779636 @default.
- W2045103143 cites W153053551 @default.
- W2045103143 cites W1534872821 @default.
- W2045103143 cites W1540031006 @default.
- W2045103143 cites W1557923305 @default.
- W2045103143 cites W1833977909 @default.
- W2045103143 cites W190437827 @default.
- W2045103143 cites W1974995152 @default.
- W2045103143 cites W1984473107 @default.
- W2045103143 cites W1989344488 @default.
- W2045103143 cites W1989344766 @default.
- W2045103143 cites W1999714678 @default.
- W2045103143 cites W2003233718 @default.
- W2045103143 cites W2003534215 @default.
- W2045103143 cites W2007426484 @default.
- W2045103143 cites W2008350001 @default.
- W2045103143 cites W2009740511 @default.
- W2045103143 cites W2015245597 @default.
- W2045103143 cites W2018631819 @default.
- W2045103143 cites W2019022588 @default.
- W2045103143 cites W2022672249 @default.
- W2045103143 cites W2022985331 @default.
- W2045103143 cites W2027446722 @default.
- W2045103143 cites W2027541734 @default.
- W2045103143 cites W2027698417 @default.
- W2045103143 cites W2029728262 @default.
- W2045103143 cites W2059857909 @default.
- W2045103143 cites W2076981722 @default.
- W2045103143 cites W2098760328 @default.
- W2045103143 cites W2103414828 @default.
- W2045103143 cites W2110768118 @default.
- W2045103143 cites W2113242816 @default.
- W2045103143 cites W2115876615 @default.
- W2045103143 cites W2139796029 @default.
- W2045103143 cites W2146424733 @default.
- W2045103143 cites W2162364423 @default.
- W2045103143 cites W2168523997 @default.
- W2045103143 cites W2325286989 @default.
- W2045103143 cites W2341171179 @default.
- W2045103143 cites W2549349192 @default.
- W2045103143 cites W2623213639 @default.
- W2045103143 cites W2911964244 @default.
- W2045103143 cites W2912934387 @default.
- W2045103143 cites W3085162807 @default.
- W2045103143 doi "https://doi.org/10.4018/ijiit.2012010103" @default.
- W2045103143 hasPublicationYear "2012" @default.
- W2045103143 type Work @default.
- W2045103143 sameAs 2045103143 @default.
- W2045103143 citedByCount "11" @default.
- W2045103143 countsByYear W20451031432012 @default.
- W2045103143 countsByYear W20451031432013 @default.
- W2045103143 countsByYear W20451031432014 @default.
- W2045103143 countsByYear W20451031432015 @default.
- W2045103143 countsByYear W20451031432017 @default.
- W2045103143 countsByYear W20451031432019 @default.
- W2045103143 countsByYear W20451031432020 @default.
- W2045103143 countsByYear W20451031432021 @default.
- W2045103143 crossrefType "journal-article" @default.
- W2045103143 hasAuthorship W2045103143A5013041648 @default.
- W2045103143 hasAuthorship W2045103143A5047086484 @default.
- W2045103143 hasAuthorship W2045103143A5062757097 @default.
- W2045103143 hasAuthorship W2045103143A5075617992 @default.
- W2045103143 hasConcept C107327155 @default.
- W2045103143 hasConcept C111012933 @default.
- W2045103143 hasConcept C113174947 @default.
- W2045103143 hasConcept C119857082 @default.
- W2045103143 hasConcept C124101348 @default.
- W2045103143 hasConcept C13280743 @default.
- W2045103143 hasConcept C134018914 @default.
- W2045103143 hasConcept C134306372 @default.
- W2045103143 hasConcept C154945302 @default.
- W2045103143 hasConcept C160735492 @default.
- W2045103143 hasConcept C162324750 @default.
- W2045103143 hasConcept C169258074 @default.
- W2045103143 hasConcept C177264268 @default.
- W2045103143 hasConcept C185798385 @default.
- W2045103143 hasConcept C199360897 @default.
- W2045103143 hasConcept C205649164 @default.
- W2045103143 hasConcept C2776541429 @default.
- W2045103143 hasConcept C33923547 @default.
- W2045103143 hasConcept C41008148 @default.
- W2045103143 hasConcept C50522688 @default.
- W2045103143 hasConcept C58489278 @default.
- W2045103143 hasConcept C71924100 @default.
- W2045103143 hasConcept C84525736 @default.
- W2045103143 hasConceptScore W2045103143C107327155 @default.
- W2045103143 hasConceptScore W2045103143C111012933 @default.
- W2045103143 hasConceptScore W2045103143C113174947 @default.
- W2045103143 hasConceptScore W2045103143C119857082 @default.