Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045115873> ?p ?o ?g. }
- W2045115873 endingPage "6006" @default.
- W2045115873 startingPage "5991" @default.
- W2045115873 abstract "Fourier-transform infrared (FTIR) spectra are used to predict the fat, protein, casein, and lactose contents of milk. These estimates are currently used to predict the individual estimated breeding values of animals. The objective of the present study was to estimate the genetic variation and heritabilities of the milk transmittance spectrum at each individual FTIR wave. Milk was sampled once per cow from a total of 1,064 Italian Brown Swiss cows from 30 herds, sired by 50 artificial insemination sires. The FTIR spectra of all samples were collected within 3 h of sampling from 25 mL of milk. The obtained spectral range comprised wavenumbers 5,000 to 930 × cm−1, corresponding to wavelengths 2.00 to 10.76 μm and frequencies from 149.9 to 27.9 THz, for a total of 1,056 waves. These were acquired using a MilkoScan FT120 FTIR interferometer (Foss Electric A/S, Hillerød, Denmark). Each spectral data point was treated as a single trait and analyzed using an animal model REML method. The results indicated that the transmittance of the bovine milk FTIR spectrum was heritable for most individual waves in the wavenumber interval from 5,000 to 930 × cm−1. Moreover, the transmittance of contiguous FTIR waves was much more highly correlated in terms of the average value and phenotypic variation, compared with genetic variation. In the present study, we characterized 5 regions of the FTIR spectrum that were relevant to the analysis of milk; 2 regions, one in the transition area between the short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) divisions of the electromagnetic spectrum (SWIR-MWIR region) and another very short region in the MWIR division (MWIR-2 region), were characterized by very high phenotypic variability in the transmittance of individual milk samples within each wave. This was caused by the absorption peaks of water, which can mask the effects of other important milk components. These regions also showed high genetic variability in transmittance, and the heritability estimates of individual waves were generally very low (with some exceptions). The 3 other identified regions contained many transmittance peaks that represented important chemical bonds; these showed much lower phenotypic and genetic variability in terms of individual waves, but relatively higher and less variable heritability estimates. Among them, the SWIR region (near-infrared) showed a peculiar cyclic pattern of the heritability coefficients of transmittance, the MWIR-1 region was particularly important for the estimation of fat, and the MWIR-LWIR region (also known also as the “fingerprint region”) had 3 areas of relatively high heritability. In summary, we found that the transmittance data from the FTIR spectra of milk have genetic variability that may prove useful for the direct genetic improvement of dairy species, rather than only through indirect phenotypic predictions of individual milk quality and technological traits." @default.
- W2045115873 created "2016-06-24" @default.
- W2045115873 creator A5006624985 @default.
- W2045115873 creator A5084740655 @default.
- W2045115873 date "2013-09-01" @default.
- W2045115873 modified "2023-09-25" @default.
- W2045115873 title "Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds" @default.
- W2045115873 cites W1521424557 @default.
- W2045115873 cites W1964272330 @default.
- W2045115873 cites W1969482253 @default.
- W2045115873 cites W1982248343 @default.
- W2045115873 cites W1984046516 @default.
- W2045115873 cites W1984700578 @default.
- W2045115873 cites W1984962100 @default.
- W2045115873 cites W1988226024 @default.
- W2045115873 cites W1989142904 @default.
- W2045115873 cites W1998810016 @default.
- W2045115873 cites W2001036435 @default.
- W2045115873 cites W2003057959 @default.
- W2045115873 cites W2008015991 @default.
- W2045115873 cites W2009136414 @default.
- W2045115873 cites W2015450625 @default.
- W2045115873 cites W2016135223 @default.
- W2045115873 cites W2023453734 @default.
- W2045115873 cites W2029207407 @default.
- W2045115873 cites W2038373785 @default.
- W2045115873 cites W2039615881 @default.
- W2045115873 cites W2041181833 @default.
- W2045115873 cites W2052460929 @default.
- W2045115873 cites W2056169166 @default.
- W2045115873 cites W2060757653 @default.
- W2045115873 cites W2061267578 @default.
- W2045115873 cites W2063588488 @default.
- W2045115873 cites W2071261895 @default.
- W2045115873 cites W2076357383 @default.
- W2045115873 cites W2078773556 @default.
- W2045115873 cites W2080547041 @default.
- W2045115873 cites W2089351396 @default.
- W2045115873 cites W2092855406 @default.
- W2045115873 cites W2100260008 @default.
- W2045115873 cites W2101590618 @default.
- W2045115873 cites W2101652153 @default.
- W2045115873 cites W2103637886 @default.
- W2045115873 cites W2104163499 @default.
- W2045115873 cites W2113524950 @default.
- W2045115873 cites W2118051155 @default.
- W2045115873 cites W2118327947 @default.
- W2045115873 cites W2118895624 @default.
- W2045115873 cites W2128408444 @default.
- W2045115873 cites W2131329185 @default.
- W2045115873 cites W2131866307 @default.
- W2045115873 cites W2134562205 @default.
- W2045115873 cites W2148370581 @default.
- W2045115873 cites W2155637283 @default.
- W2045115873 cites W2156026072 @default.
- W2045115873 cites W2158539483 @default.
- W2045115873 cites W215859976 @default.
- W2045115873 cites W2167789971 @default.
- W2045115873 cites W2168915868 @default.
- W2045115873 cites W2170895652 @default.
- W2045115873 cites W2171692391 @default.
- W2045115873 cites W4247129109 @default.
- W2045115873 doi "https://doi.org/10.3168/jds.2013-6583" @default.
- W2045115873 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23810593" @default.
- W2045115873 hasPublicationYear "2013" @default.
- W2045115873 type Work @default.
- W2045115873 sameAs 2045115873 @default.
- W2045115873 citedByCount "68" @default.
- W2045115873 countsByYear W20451158732013 @default.
- W2045115873 countsByYear W20451158732014 @default.
- W2045115873 countsByYear W20451158732015 @default.
- W2045115873 countsByYear W20451158732016 @default.
- W2045115873 countsByYear W20451158732017 @default.
- W2045115873 countsByYear W20451158732018 @default.
- W2045115873 countsByYear W20451158732019 @default.
- W2045115873 countsByYear W20451158732020 @default.
- W2045115873 countsByYear W20451158732021 @default.
- W2045115873 countsByYear W20451158732022 @default.
- W2045115873 countsByYear W20451158732023 @default.
- W2045115873 crossrefType "journal-article" @default.
- W2045115873 hasAuthorship W2045115873A5006624985 @default.
- W2045115873 hasAuthorship W2045115873A5084740655 @default.
- W2045115873 hasBestOaLocation W20451158731 @default.
- W2045115873 hasConcept C102519508 @default.
- W2045115873 hasConcept C113196181 @default.
- W2045115873 hasConcept C120665830 @default.
- W2045115873 hasConcept C121332964 @default.
- W2045115873 hasConcept C134306372 @default.
- W2045115873 hasConcept C150493377 @default.
- W2045115873 hasConcept C158355884 @default.
- W2045115873 hasConcept C160892712 @default.
- W2045115873 hasConcept C185592680 @default.
- W2045115873 hasConcept C192562407 @default.
- W2045115873 hasConcept C33923547 @default.
- W2045115873 hasConcept C43617362 @default.
- W2045115873 hasConcept C6260449 @default.
- W2045115873 hasConceptScore W2045115873C102519508 @default.
- W2045115873 hasConceptScore W2045115873C113196181 @default.