Matches in SemOpenAlex for { <https://semopenalex.org/work/W2045157414> ?p ?o ?g. }
- W2045157414 endingPage "288" @default.
- W2045157414 startingPage "273" @default.
- W2045157414 abstract "In the present work we study the appropriateness of a number of linear and non-linear regression methods, employed on the task of speech segmentation, for combining multiple phonetic boundary predictions which are obtained through various segmentation engines. The proposed fusion schemes are independent of the implementation of the individual segmentation engines as well as from their number. In order to illustrate the practical significance of the proposed approach, we employ 112 speech segmentation engines based on hidden Markov models (HMMs), which differ in the setup of the HMMs and in the speech parameterization techniques they employ. Specifically we relied on sixteen different HMMs setups and on seven speech parameterization techniques, four of which are recent and their performance on the speech segmentation task have not been evaluated yet. In the evaluation experiments we contrast the performance of the proposed fusion schemes for phonetic boundary predictions against some recently reported methods. Throughout this comparison, on the established for the phonetic segmentation task TIMIT database, we demonstrate that the support vector regression scheme is capable of achieving more accurate predictions, when compared to other fusion schemes reported so far." @default.
- W2045157414 created "2016-06-24" @default.
- W2045157414 creator A5012306299 @default.
- W2045157414 creator A5016006232 @default.
- W2045157414 creator A5072213387 @default.
- W2045157414 date "2010-04-01" @default.
- W2045157414 modified "2023-09-26" @default.
- W2045157414 title "Speech segmentation using regression fusion of boundary predictions" @default.
- W2045157414 cites W131170453 @default.
- W2045157414 cites W1594082249 @default.
- W2045157414 cites W168484277 @default.
- W2045157414 cites W1837953807 @default.
- W2045157414 cites W1965664780 @default.
- W2045157414 cites W1991133427 @default.
- W2045157414 cites W2008806652 @default.
- W2045157414 cites W2033037901 @default.
- W2045157414 cites W2034878035 @default.
- W2045157414 cites W2054665642 @default.
- W2045157414 cites W2056457557 @default.
- W2045157414 cites W2059026503 @default.
- W2045157414 cites W2065796495 @default.
- W2045157414 cites W2077529289 @default.
- W2045157414 cites W2077804127 @default.
- W2045157414 cites W2086699924 @default.
- W2045157414 cites W2090861223 @default.
- W2045157414 cites W2106221537 @default.
- W2045157414 cites W2111478553 @default.
- W2045157414 cites W2115076892 @default.
- W2045157414 cites W2117499474 @default.
- W2045157414 cites W2119315826 @default.
- W2045157414 cites W2127854316 @default.
- W2045157414 cites W2130531618 @default.
- W2045157414 cites W2142635246 @default.
- W2045157414 cites W2148154194 @default.
- W2045157414 cites W2148580904 @default.
- W2045157414 cites W2149999905 @default.
- W2045157414 cites W2154826081 @default.
- W2045157414 cites W2161920802 @default.
- W2045157414 cites W2162258033 @default.
- W2045157414 cites W2169711598 @default.
- W2045157414 cites W2192975138 @default.
- W2045157414 cites W39836914 @default.
- W2045157414 cites W4299570235 @default.
- W2045157414 cites W97413234 @default.
- W2045157414 doi "https://doi.org/10.1016/j.csl.2009.04.004" @default.
- W2045157414 hasPublicationYear "2010" @default.
- W2045157414 type Work @default.
- W2045157414 sameAs 2045157414 @default.
- W2045157414 citedByCount "25" @default.
- W2045157414 countsByYear W20451574142012 @default.
- W2045157414 countsByYear W20451574142013 @default.
- W2045157414 countsByYear W20451574142014 @default.
- W2045157414 countsByYear W20451574142015 @default.
- W2045157414 countsByYear W20451574142017 @default.
- W2045157414 countsByYear W20451574142018 @default.
- W2045157414 countsByYear W20451574142019 @default.
- W2045157414 crossrefType "journal-article" @default.
- W2045157414 hasAuthorship W2045157414A5012306299 @default.
- W2045157414 hasAuthorship W2045157414A5016006232 @default.
- W2045157414 hasAuthorship W2045157414A5072213387 @default.
- W2045157414 hasConcept C105795698 @default.
- W2045157414 hasConcept C119857082 @default.
- W2045157414 hasConcept C134306372 @default.
- W2045157414 hasConcept C138885662 @default.
- W2045157414 hasConcept C152877465 @default.
- W2045157414 hasConcept C153180895 @default.
- W2045157414 hasConcept C154945302 @default.
- W2045157414 hasConcept C158525013 @default.
- W2045157414 hasConcept C207030507 @default.
- W2045157414 hasConcept C28490314 @default.
- W2045157414 hasConcept C33923547 @default.
- W2045157414 hasConcept C41008148 @default.
- W2045157414 hasConcept C41895202 @default.
- W2045157414 hasConcept C62354387 @default.
- W2045157414 hasConcept C83546350 @default.
- W2045157414 hasConcept C89600930 @default.
- W2045157414 hasConceptScore W2045157414C105795698 @default.
- W2045157414 hasConceptScore W2045157414C119857082 @default.
- W2045157414 hasConceptScore W2045157414C134306372 @default.
- W2045157414 hasConceptScore W2045157414C138885662 @default.
- W2045157414 hasConceptScore W2045157414C152877465 @default.
- W2045157414 hasConceptScore W2045157414C153180895 @default.
- W2045157414 hasConceptScore W2045157414C154945302 @default.
- W2045157414 hasConceptScore W2045157414C158525013 @default.
- W2045157414 hasConceptScore W2045157414C207030507 @default.
- W2045157414 hasConceptScore W2045157414C28490314 @default.
- W2045157414 hasConceptScore W2045157414C33923547 @default.
- W2045157414 hasConceptScore W2045157414C41008148 @default.
- W2045157414 hasConceptScore W2045157414C41895202 @default.
- W2045157414 hasConceptScore W2045157414C62354387 @default.
- W2045157414 hasConceptScore W2045157414C83546350 @default.
- W2045157414 hasConceptScore W2045157414C89600930 @default.
- W2045157414 hasIssue "2" @default.
- W2045157414 hasLocation W20451574141 @default.
- W2045157414 hasOpenAccess W2045157414 @default.
- W2045157414 hasPrimaryLocation W20451574141 @default.
- W2045157414 hasRelatedWork W177166743 @default.
- W2045157414 hasRelatedWork W1986410788 @default.